Solent Transport Model Reference number 102891 12/12/2017

ROAD TRAFFIC MODEL

MODEL DEVELOPMENT AND VALIDATION REPORT

SOLENT TRANSPORT MODEL

ROAD TRAFFIC MODEL

IDENTIFICATION TABLE		
Client/Project owner	Solent Transport	
Project	Solent Transport Model	
Study	Road Traffic Model	
Type of document	Model Development and Validation Report	
Date	12/12/2017	
File name	SRTM2015_RTM_Calibration_validation_Report_v3c_InProgress.docx	
Reference number	102891	
Number of pages	77	

APPROVAL

Version	Name		Date	Modifications	
1	Main Authors	Stefanos Taskaris, Ian Wilkinson	20/06/2017		
	Checked by	lan Burden	20/06/2017		
	Approved by	Chris Whitehead	20/06/2017		
2	Main Authors	Stefanos Taskaris, Ian Wilkinson, Claire Stephens	16/08/2017	Prior matrix section included	
	Checked by	lan Burden	18/08/2017		
	Approved by	Chris Whitehead	18/08/2017		
3	Main Authors	Chloe Crossman, Claire Stephens	11/12/2017		
	Checked by	Claire Stephens	11/12/2017	Responding to client queries	
	Approved by	lan Burden	12/12/2017		

TABLE OF CONTENTS

1.	INTRODUCTION	7
1.2	REPORT STRUCTURE	7
2.	PROPOSED USES OF THE MODEL	8
2.1	PROPOSED USES OF THE MODEL: SCENARIOS TO BE FORECAST AND INTERVENTIONS TO BE TESTED	8
2.2	CONTEXT AND SCOPE	8
3.	MODEL STANDARDS	10
3.1	INTRODUCTION	10
3.2	Validation Criteria and Acceptability Guidelines	10
3.3	CONVERGENCE CRITERIA AND STANDARDS	13
4.	KEY FEATURES OF THE MODEL	14
4.1	INTRODUCTION	14
4.2	GEOGRAPHIC SCOPE	14
4.3	ZONING SYSTEM	16
4.4	NETWORK STRUCTURE	18
4.5	TIME PERIODS AND YEARS	18
4.6	User Classes	19
4.7	Assignment Methodology	20
4.8	JUNCTION MODELLING AND SPEED/FLOW RELATIONSHIPS	20
5.	CALIBRATION AND VALIDATION DATA	21
5.1	INTRODUCTION	21
5.2	ROADSIDE INTERVIEW (RSI) SURVEYS	21
5.3	TRAFFIC COUNTS	23
5.4	Automatic Number Plate Recognition Survey	23
5.5	JOURNEY TIME	24
6.	NETWORK DEVELOPMENT	28
6.1	INTRODUCTION	28
6.2	NETWORK STRUCTURE	28
6.3	Simulation Area Coding	29
6.4	NETWORK CHECKING PROCESS	31

7.	TRIP MATRIX DEVELOPMENT	32
7.1	INTRODUCTION	32
7.2	SUMMARY OF BASE YEAR MATRIX CONSTRUCTION	32
7.3	DEVELOPMENT OF PARTIAL MATRICES	34
7.4	DEVELOPMENT OF TRIP ENDS	36
7.5	ORIGIN/DESTINATION DEMAND MATRICES	37
7.6	DEMAND FROM GATEWAY ZONES (AIRPORT & DOCKS) FROM THE GDM	48
7.7	Assignment Matrices	52
7.8	PRIOR - TRIP MATRIX VALIDATION	52
8.	MATRIX CALIBRATION AND VALIDATION	54
8.1	INTRODUCTION	54
8.2	TRIP MATRIX ESTIMATION PROCESS	54
8.3	TRIP MATRIX ESTIMATION OUTCOMES	55
8.4	Post - Trip Matrix Validation	65
9.	NETWORK CALIBRATION AND VALIDATION	67
9.1	INTRODUCTION	67
9.2	LINK FLOW VALIDATION	67
9.3	JOURNEY TIME VALIDATION	69
9.4	CONVERGENCE AND STABILITY	69
10.	SUMMARY OF MODEL DEVELOPMENT AND FITNESS FOR PURPOSE	72
10.1	SUMMARY OF MODEL DEVELOPMENT	72
10.2	SUMMARY OF STANDARDS ACHIEVED	74
10.3	CONCLUSION	76

APPENDICES

Appendix A Prior Matrix Cordon, Screenline and Link Validation Summary Appendix B Post Matrix Cordon, Screenline and Link Validation Summary Appendix C Journey Time Validation Summary Appendix D Journey Time Profiles

LIST OF FIGURES

Figure 1.	Solent Sub-Regional Transport Model	9
Figure 2.	Study Area of the RTM	15
Figure 3.	SRTM Zone system around the Study Area	17
Figure 4.	Location of RSI Sites and Screenlines	22
Figure 5.	Map of Journey Time Assessment Routes: Part 1	25
Figure 6.	Map of Journey Time Assessment Routes: Part 2 – Route 18 to 20	26
Figure 7.	Map of Journey Time Assessment Routes: Part 2 – Route 21 to 23	26
Figure 8.	Map of Journey Time Assessment Routes: Motorways – Route 24	27
Figure 9.	Map of Journey Time Assessment Routes: Motorways – Route 25	27
Figure 10.	RTM Study Area	28
Figure 11.	RTM Network by Aggregated Link Type (Core Area only)	30
Figure 12.	Aggregation of RSI Origins and Destinations to Solent Trip Purposes	35
Figure 13.	Aggregation of RSI Origins and Destinations to Solent Trip Purposes	36
Figure 14.	Cost Deterrence Functions	39
Figure 16.	Scatter Plot of Pre and Post ME AM Peak Matrix Row Totals	57
Figure 17.	Scatter Plot of Pre and Post ME AM Peak Matrix Column Totals	58
Figure 18.	Scatter Plot of Pre and Post ME Inter Peak Matrix Row Totals	59
Figure 19.	Scatter Plot of Pre and Post ME Inter Peak Matrix Column Totals	60
Figure 20.	Scatter Plot of Pre and Post ME PM Peak Matrix Row Totals	61
Figure 21.	Scatter Plot of Pre and Post ME PM Peak Matrix Column Totals	62
Figure 22.	Trip Frequency Distribution Pre/Post ME AM Peak Hour – Relative frequency	63
Figure 23.	Trip Frequency Distribution Pre/Post ME Inter-Peak Hour – Relative frequency	63
Figure 24.	Trip Frequency Distribution Pre/Post ME PM Peak Hour – Relative frequency	64

LIST OF TABLES

Table 1.	Screenline Flow Validation Criterion and Acceptability Guideline	11
Table 2.	Link Flow Validation Criteria and Acceptability Guidelines	12
Table 3.	Journey Time Validation Criteria and Acceptability Guideline	12
Table 4.	Summary of Convergence Measures and Base Model Acceptable Values	13
Table 5.	Model Suite Zone System Requirements	16
Table 6.	RTM Network detail	18
Table 7.	Time Period Definitions	19
Table 8.	Peak Hour Factors	19
Table 9.	List of Journey Time Routes	24
Table 10.	Matrix Development Method Summary Demand by Modelled Area	32
Table 11.	Trip Purpose Segmentations	34
Table 12.	Aggregation of RSI Vehicle Types to Solent Vehicle Types	35
Table 13.	Vehicle Occupancies by Trip Purpose	37
Table 14.	Synthesised vs Observed relative and cumulative frequency distribution AM	40
Table 15.	Synthesised vs Observed relative and cumulative frequency distribution IP	43
Table 16.	Synthesised vs Observed relative and cumulative frequency distribution PM	45
Table 17.	Gravity model calibration parameters	47
Table 18.	ANPR Through Traffic Vehicles by Period and Vehicle Class	48

Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 5/77

Table 19.	Origin Car Growth Factors	49
Table 20.	Origin LGV Growth Factors	49
Table 21.	Origin HGV Growth Factors	50
Table 22.	Destination Car Growth Factors	50
Table 23.	Destination LGV Growth Factors	51
Table 24.	Destination HGV Growth Factors	51
Table 25.	Gateway Demand Vehicles by Period and Vehicle class	51
Table 26.	Prior Matrix – RSI Cordon and Screenline Validation: Vehicles	53
Table 27.	Prior and Estimated Matrix Sizes	56
Table 28.	Mean Trip Length (km)	64
Table 29.	Screenline Flow Validation Criterion and Acceptability Guideline	65
Table 30.	Cordon and Screenline Flow Validation: Vehicles	66
Table 31.	Cordon and Screenline Flow Validation: Cars	66
Table 32.	Link Flow Validation Criteria and Acceptability Guidelines	67
Table 33.	Link Flow Validation: Vehicles	68
Table 34.	Link Flow Validation: Cars	68
Table 35.	Journey Time Validation Criteria and Acceptability Guideline	69
Table 36.	Journey Time Validation	69
Table 37.	Summary of Convergence Measures and Base Model Acceptable Values	69
Table 38.	Convergence and Stability Model Results	70
Table 39.	Summary of Validation Statistics	75

1. INTRODUCTION

- 1.1.1 SYSTRA was commissioned, as part of a wider team, to support Solent Transport with the development and application of a Sub-Regional Transport Model Suite (SRTM) for this nationally important area. The model was originally developed with a 2010 base year and has now been updated to a 2015 base year.
- 1.1.2 This Working Paper describes the development, calibration and validation of the Road Traffic Model (RTM) within the SRTM

1.2 Report Structure

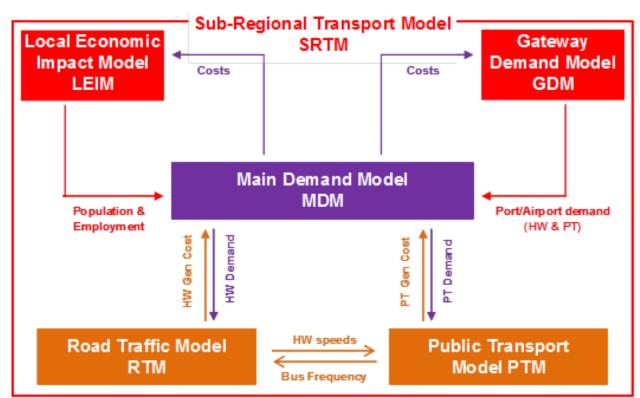
- 1.2.1 In addition to confirmation of methodologies, the purpose of this Working Paper is to demonstrate the quality of the base year (2015) assignment model in terms of how closely it reproduces a set of observations.
- 1.2.2 The Working Paper can be regarded as having two parts, the first being Chapters 1-7 which deal with the context and methodologies and the second being Chapters 8-10 which focus on base year model outcomes. Chapters 8-10 include actions undertaken and results of model calibration and validation. The chapters are as follows:
 - Chapter 2: Proposed Uses of the Model and Key Model Design Considerations;
 - Chapter 3: Model Standards;
 - Chapter 4: Key Features of the Model;
 - Chapter 5: Calibration and Validation Data;
 - Chapter 6: Network Development
 - Chapter 7: Trip Matrix Development;
 - Chapter 8: Network Calibration and Validation;
 - Chapter 9: Assignment Calibration and Validation;
 - Chapter 10: Summary of Model Development and Fitness for Purpose;
 - Appendices

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 7/77

2. PROPOSED USES OF THE MODEL

2.1 Proposed Uses of the Model: Scenarios to be Forecast and Interventions to be Tested

- 2.1.1 The SRTM will be used to support a wide-ranging set of interventions across the Solent subregion, and is specifically required to be capable of:
 - forecasting changes in travel demand, road traffic, public transport patronage and active mode use over time as a result changing economic conditions, land-use policies and development, and transport improvement and interventions;
 - testing the impacts of land-use and transport policies and strategies within a relatively short model run time; and
 - testing the impacts of individual transport interventions in the increased detail necessary for preparing submissions for inclusion in funding programmes within practical (but probably longer) run times.
- 2.1.2 As the lead contractor SYSTRA takes overall responsibility for the RTM documented in this Working Paper, the models listed in the Foreword, and the associated project deliverables.


2.2 Context and Scope

- 2.2.1 SRTM is a suite of linked models comprising the following components as shown in Figure 1:
 - the Main Demand Model (MDM) which predicts when (time of day), where (destination choice) and how (choice of mode) journeys are made;
 - the Gateway Demand Model (GDM) which predicts demand for travel from ports and airports;
 - the Road Traffic Model (RTM) which determines the routes taken by vehicles through the road network and journey times, accounting for congestion;
 - the Public Transport Model (PTM) which determines routes and services chosen by public transport passengers; and
 - an associated Local Economic Impact Model (LEIM) which uses inputs including transport costs to forecast the quantum and location of households, populations and jobs.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 8/77

Figure 1. Solent Sub-Regional Transport Model

- 2.2.2 The RTM has been developed to represent the base year demand, route choices and costs on the highway network. In terms of future scenarios, it will represent the network impacts of different policy and infrastructure interventions.
- 2.2.3 It is important that the RTM includes the ability to model traffic behaviour at junctions, including flow metering downstream from bottlenecks as well as blocking-back through upstream junctions. As such SATURN was selected as the most appropriate software package to use. SATURN is perhaps the most commonly used highway modelling software in the UK, benefiting from a large user base, customer support and regular maintenance, and has been used successfully for many applications since its first release in 1981.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 9/77

3. MODEL STANDARDS

3.1 Introduction

- 3.1.1 This chapter describes the criteria and acceptability guidelines against which the base year model will be assessed in Chapter 8 (Trip Matrix Calibration and Validation) and Chapter 9 (Assignment Calibration and Validation). The aim for the RTM is to achieve the validation criteria and acceptability guidelines set out in WebTAG Unit M3-1 https://www.gov.uk/government/publications/webtag-tag-unit-m3-1-highway-assignment-modelling
- 3.1.2 Whilst the Department for Transport requires that road traffic assignment models be validated against these standards, it does recognise that some relaxation of these acceptability guidelines may be appropriate for large scale models.

3.2 Validation Criteria and Acceptability Guidelines

- 3.2.1 Validation simply involves comparing modelled and observed data. Any adjustments to the model intended to reduce the differences between the modelled and observed data are regarded as calibration.
- 3.2.2 The differences between modelled and observed data are quantified (using some measures) and then assessed using some criteria. The acceptability of the proportion of instances where the criteria are met is then assessed.
- 3.2.3 The validation of a highway assignment model includes comparisons of the following:
 - assigned flows and counts totalled for each screenline or cordon, as a check on the quality of the trip matrices;
 - assigned flows and counts on individual links as a check on the quality of the assignment; and
 - modelled and observed journey times along routes, as a check on the quality of the network and the assignment.
- 3.2.4 For trip matrix validation, the measure used is: the absolute differences between modelled flows and counts.
- 3.2.5 For link flow validation, the measures used are:
 - the absolute differences between modelled flows and counts; and
 - the GEH statistic which is a form of the Chi-squared statistic that incorporates both relative and absolute errors, and is defined as follows:

$$GEH = \sqrt{\frac{\left(M-C\right)^2}{\left(0.5 \times \left(M+C\right)\right)}}$$

where: M is the modelled flow; and C is the observed flow.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 10/77

- 3.2.6 For journey time validation, the measure used is: the percentage difference between modelled and observed journey times, subject to an absolute maximum difference.
- 3.2.7 The validation criteria and acceptability guidelines for each of these measures are as follows.

Trip Matrix Validation

3.2.8 Comparisons at screenline level provide information on the quality of the trip matrices. The validation criterion and acceptability guideline for screenline flows are defined in Table 1 (from TAG Unit 3-1). Screenline Flow Validation Criterion and Acceptability Guideline.

CRITERIA	DMRB ACCEPTABILITY GUIDELINE
Differences between modelled flows and counts should be less than 5% of the counts	All or nearly all screenlines

- 3.2.9 With regard to screenline validation, the following should be noted:
 - screenlines should normally be made up of more than 5 links; for screenlines of fewer links, the acceptability guideline may be relaxed pro rata between 5% for 5 links and 15% for 1 link;
 - the comparisons for screenlines containing high flow routes such as motorways should be presented both including and excluding such routes;
 - the comparisons should be presented separately for (a) roadside interview screenlines; (b) the other screenlines used as constraints in matrix estimation (excluding the roadside interview screenlines even though they have been used as constraints in matrix estimation); and (c) screenlines used for independent validation;
 - the comparisons should be presented by vehicle type (preferably cars, light goods vehicles and other goods vehicles); and
 - the comparisons should be presented separately for each modelled period or hour.

Link Flow Validation

3.2.10 The validation criteria and acceptability guidelines for link flows are defined in Table 2.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 11/77

Table 2.	Link Flow Validation	Criteria and	Acceptability Guidelines
----------	----------------------	---------------------	--------------------------

CRITERIA	DMRB ACCEPTABILITY GUIDELINE
Individual flows within 15% of counts for flows from 700-2700 veh/h	> 85% of cases
Individual flows within 100 veh/h of counts for flows less than 700veh/h	> 85% of cases
Individual flows within 400 veh/h of counts for flows more than 2700 veh/h	> 85% of cases
GEH < 5 for individual flows	> 85% of cases

3.2.11 With regard to flow validation, the following should be noted:

- the comparisons should be presented for cars and all vehicles but not for light and other goods vehicles unless sufficiently accurate link counts have been obtained; and
- the comparisons should be presented separately for each modelled period or hour.

Journey Time Validation

3.2.12 The validation criterion and acceptability guideline for journey times are defined in Table 3.

Table 3. Journey Time Validation Criteria and Acceptability Guideline

CRITERIA	DMRB ACCEPTABILITY GUIDELINE
Modelled times along routes should be within 15% of surveyed times (or 1 minute, if higher)	> 85% of routes

3.2.13 With regard to the journey time validation, the comparisons should be presented separately for each modelled period or hour.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 12/77

3.3 Convergence Criteria and Standards

- 3.3.1 WebTAG Unit M3-1 states that before the results of any traffic assignment are used to influence decisions, the stability (or degree of convergence) of the assignment must be confirmed at the appropriate level. The importance of achieving convergence is related to the need to provide stable, consistent and robust model results. When the model outputs are being used to compare development or infrastructure options, it is important to be able to distinguish differences due to the scheme from those associated with different degrees of convergence, i.e. model 'noise'.
- 3.3.2 As recommended in WebTAG Unit M3-1 SATURN provides the ability to monitor and control stopping criteria using the '%GAP' statistic which is controlled in SATURN by the parameter 'STPGAP'. This is the difference between the costs along the chosen routes and those along the minimum cost routes, summed across the whole network, and expressed as a percentage of the minimum costs. Section 9.4 provides more detail on the parameters used to control and monitor convergence.
- 3.3.3 Table 4 summarises the most appropriate convergence measures and the values generally considered acceptable for use in establishing a base model. Tighter levels of convergence may be required for option testing. To ensure that, during the development of the base year model, reasonable levels of assignment convergence are achieved, WebTAG Unit M3-1 states a target %GAP value of 0.1% is used that is, sufficient iterations are carried out to achieve a %GAP of 0.1% or less on four consecutive assignment loops.

Table 4. Summary of Convergence Measures and Base Model Acceptable Values

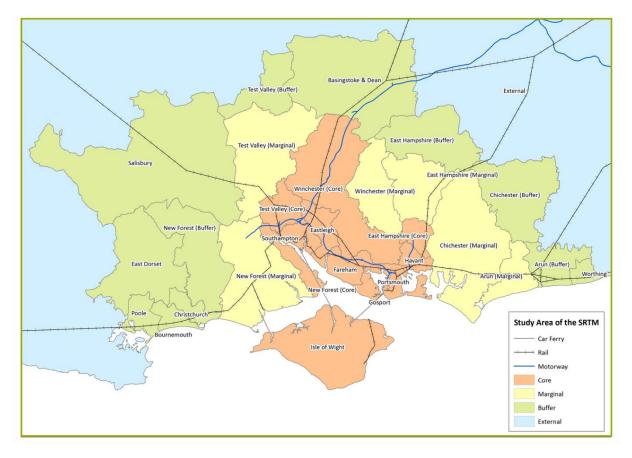
MEASURE OF CONVERGENCE	BASE MODEL ACCEPTABLE VALUES
Delta and %GAP	Less than 0.1% or at least stable with convergence fully documented and all other criteria met
Percentage of links with flow change (P)<1%	Four consecutive iterations greater than 98%
Percentage of links with cost change (P2)<1%	Four consecutive iterations greater than 98%

Solent Transport Model			
Road Traffic Model	102891		
Model Development and Validation Report	12/12/2017	Page 13/	77

4. KEY FEATURES OF THE MODEL

4.1 Introduction

- 4.1.1 This chapter summarises the features of the RTM and includes the following sections:
 - Geographic scope;
 - Zoning system;
 - Network structure;
 - Centroid connectors;
 - Time periods;
 - Modelled years;
 - User classes;
 - Assignment methodology;
 - Generalised cost formulations and parameter values; and
 - Junction modelling and speed/flow relationships.


4.2 Geographic Scope

- 4.2.1 The modelled area of the RTM is sub-divided into four regions which differ by zone aggregation and modelling detail, as follows:
 - Core Fully Modelled Area (detailed zoning);
 - Marginal Fully Modelled Area (normally based on MSOAs);
 - Buffer Area (zones based on Districts); and
 - External (zones based on Districts and Counties).
- 4.2.2 Figure 2 shows the four regions of the study area. The core fully modelled area has the finest level of zone detail and a junction modelled (simulation) network representation in the RTM.
- 4.2.3 The core fully modelled area is defined by the Transport for South Hampshire boundary. This is the area which has the finest level of detail in the zoning and, for the RTM, a simulation network representation

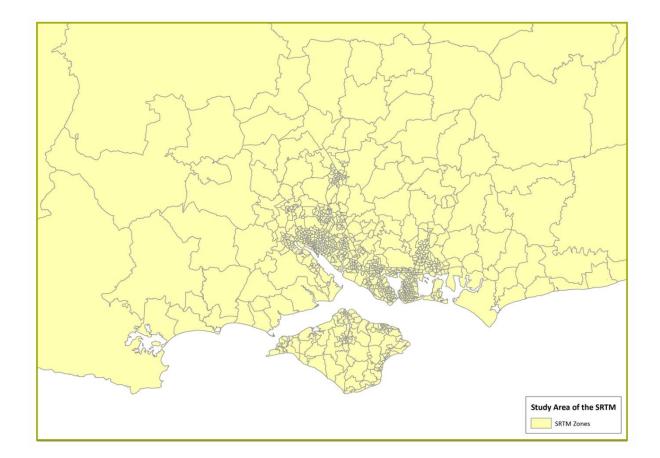
SYST(A

Figure 2. Study Area of the RTM

4.3 Zoning System

- 4.3.1 The choice of zone system dictates the level of spatial resolution of the models and hence the ability of the models to realistically represent the transport situation. Current guidance states that in the 'internal' area zone boundaries should seek to take account of the following:
 - natural barriers (rivers, railways, motorways or other major roads);
 - areas of similar land use that have clearly identifiable and unambiguous points of access onto the road network included in the model;
 - existing zone boundaries, where an existing model is being used as the basis for the new model;
 - administrative and planning data boundaries (wards, parishes, Census Output Areas);
 - the location of the main parking areas, where town centres are included in the model; and
 - the need for internal screenlines for trip matrix validation.
- 4.3.2 Within this study the zoning must also satisfy the requirements of all of the models within the model suite.
- 4.3.3 Table 5 shows the various zone system requirements for each of the models.

MODEL	REQUIREMENT	
	Land use characteristics for ensuring zones contain similar land use	
MDM & LEIM	Known future development sites are not given their own exclusive zones. Instead zone numbers have been reserved for that purpose in future year modelling	
RTM	Highway access can be realistically modelled	
K I M	RSI enclosure boundaries (RTM) and highway screenlines must be respected	
РТМ	Walk access/egress must be modelled in enough detail to ensure true differential between public transport and highway	
	Bus stop catchments, bus stop 'clusters', bus corridors and fare zones must be taken into account	
	Public transport screenlines must be respected	
GDM	The GDM will work at the (air/sea) port level at one end of port-terminating trips but the different network access points for "gateway traffic" will be defined as zones	


Table 5. Model Suite Zone System Requirements

102891

- 4.3.4 The SRTM zone system uses 2011 Census Output Areas (COAs) as building blocks in the fully modelled area. Elsewhere, the zone system uses aggregations of Census Wards. Consistency with other existing models such as the Solent Strategic Transport Model (SSTM) and the Portsmouth Western Corridor Study (PWCS) model has also been incorporated as required. In the fully modelled area, disaggregation was used to ensure that no zones have more than 400 highway trip origins or destinations per hour in the base year
- 4.3.5 Figure 3 shows the SRTM zone system around the study area.

Figure 3. SRTM Zone system around the Study Area

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 17/77

4.4 Network Structure

4.4.1 As discussed above, the study area of the RTM is broken down into the Core and Marginal Fully Modelled Areas, the Buffer Area and the External Area. These areas are represented by three levels of network detail, as shown in Table 6.

Table 6. RTM Network detail			
NETWORK TYPE	MODEL AREA	MODELLING DESCRIPTION	
Simulation network	Cored Fully Modelled Area	Junction capacity restraints are explicitly modelled for priority junctions, roundabouts, and signalised junctions considering the interaction of different movements	
Speed/flow network	Marginal Fully Modelled Area	Capacity restraint is based on flow delay curves, where increased flows on a particular link result in increased travel times along that link	
Fixed speed	Buffer Area External Area	Fixed speeds are modelled along each link	

- 4.4.2 The core fully modelled area of the traffic model includes all Motorways, A roads, B roads and minor roads and other roads considered to carry high volumes of traffic. The 2004 base year SATURN Solent Strategic Transport Model (SSTM) and the Portsmouth Western Corridor Strategy Model (PWCM) were used to assess which minor roads have sufficiently high volumes of traffic to warrant inclusion using the professional judgment of the project team. In addition, all bus routes were added to the RTM to facilitate interface with the PTM and Demand Model. Furthermore, the network and zone connectors were modified, as appropriate, following a Client Steering Group review.
- 4.4.3 The marginal fully modelled area includes all motorways, A roads and B roads along strategic routes.
- 4.4.4 The buffer area includes all motorways and A roads along strategic routes.
- 4.4.5 The external area is a skeletal network, covering main routes into the sub-region. It includes only Motorways and major A roads.
- 4.4.6 The network representation of the RTM has been defined in such a way to ensure smooth transition of network representation from simulation to speed/flow relationships, and speed/flow relationships to fixed speed

4.5 Time Periods and Years

- 4.5.1 Three weekday periods are modelled in the RTM:
 - AM peak;
 - Inter peak; and
 - O PM peak.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 18/77

4.5.2 These three periods cover a 12 hour period and allow the relative differentials in travel cost to be represented. The periods are defined in Table 7.

PERIOD	FULL PERIOD FOR DEMAND MODEL	RTM ASSIGNMENT PERIOD
AM peak	07:00-10:00	Peak hour (factored from period)
Inter peak	10:00-16:00	Average hour from full period
PM peak	16:00-19:00	Peak hour (factored from period)

Table 7. Time Period Definitions

4.5.3 The RTM is based on demand levels for one-hour periods, based on the distributions of the broader period. For the inter peak this is an average hour whilst the AM and PM peak periods are represented by the peak hours. AM and PM peak matrices have been obtained from the period matrices, by applying peak hour factors which have been calculated from an analysis of count data. The peak hour factors are shown in Table 8 below.

Table 8. Peak Hour Factors

	AM PEAK	INTER PEAK	PM PEAK
Period to 1 Hr Factor	0.405	0.167	0.368

4.5.4 In line with the Main Demand Model the RTM has a base year of 2015, and forecast years of 2019, 2026 and 2036. In addition LEIM provides forecasts through to 2041.

4.6 User Classes

- 4.6.1 The user classes for the RTM are based on the MDM trip purpose segments. The trip purpose segments are aggregated based on differentials in users' value of time (VoT) and differentials in vehicle operating cost (VoC). The RTM has the following assignment user classes:
 - Car Employer's Business;
 - Car Other;
 - LGVs; and
 - O OGVs.
- 4.6.2 Travellers in the employer's business class have a higher value of time than in the other classes, which needs to be retained in the assignment model.
- 4.6.3 The 'Other' user class includes all car trips with purposes of commuting, shopping, education, leisure, personal business. These have been combined because the VoT:VoC relationship is considered to be sufficiently similar to not warrant the additional run times introduced by separate assignment segments.

4.6.4 Separate demand segments have been defined to represent LGV and OGV trips due to the assumed insensitivity of these types of trips to changes in travel cost, and also due to the differential in both their vehicle operation costs and users' value of time.

4.7 Assignment Methodology

4.7.1 The deterministic user equilibrium method implemented in the SATURN software is used. This assumes that users have perfect knowledge of the time taken to pass through the network from their origin to destination.

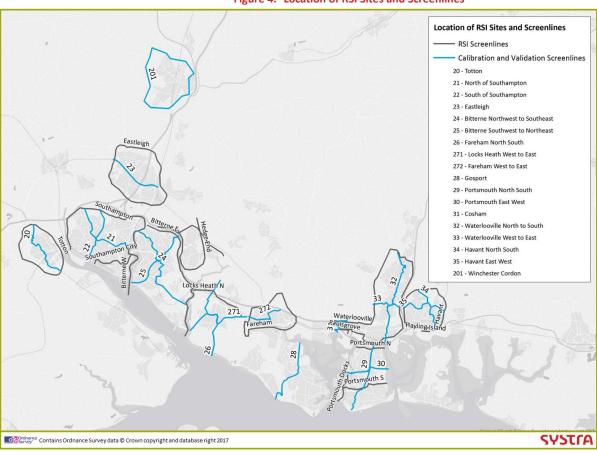
4.8 Junction Modelling and Speed/Flow Relationships

- 4.8.1 In models of congested areas, capacity restraint should be applied by the use of either:
 - link-based speed/flow or flow/delay relationships; or
 - flow/delay modelling of junctions.
- 4.8.2 The Core Fully Modelled Area contains the highest level of detail within the model and, hence, this is the area within which all significant junctions are modelled in detail (simulated).
- 4.8.3 Within the Marginal Fully Modelled Area capacity restraint is based on flow delay curves, where increased flows on a particular link result in increased travel times along that link.
- 4.8.4 Junction modelling is required where junction capacities have a significant impact on drivers' route choice, and where delays are not adequately represented by speed/flow relationships applied to network links. Care has been taken to specify realistic capacities throughout the Fully Modelled Area and in the choice of turning movements for which it is necessary to specify individual turn capacities. In selecting the Fully Modelled Area, the need for continuity and consistency of procedures such as flow metering and blocking back are important which is catered for in SATURN.

5. CALIBRATION AND VALIDATION DATA

5.1 Introduction

- 5.1.1 This chapter describes the data used to build, calibrate and validate the RTM. Data collected for the purpose of building, calibrating and validation the RTM includes:
 - Roadside Interview Surveys (RSI);
 - Screenline, manual classified and automatic traffic counts;
 - Automatic number plate recognition (ANPR) surveys; and
 - TrafficMaster[™] data for journey times.


5.2 Roadside Interview (RSI) Surveys

- 5.2.1 The Roadside Interview (RSI) Surveys used for the development of 2010 South Hampshire Traffic model¹ were uplifted appropriately as to be indicative of the 2015 travel patterns.
- 5.2.2 Details of the Roadside Interview (RSI) Surveys could be found in the relevant report (Transport for South Hampshire Evidence Base, Road Traffic Model Calibration and Validation Working Paper 9, September 2011).
- 5.2.3 Figure 4 shows the location of the RSI sites and screenlines.

¹ Transport for South Hampshire Evidence Base, Road Traffic Model Calibration and Validation Working Paper 9, September 2011

Figure 4. Location of RSI Sites and Screenlines

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 22/77

5.3 Traffic Counts

- 5.3.1 Automatic traffic counts were undertaken in both directions at the enclosure crossing points for a two week period encompassing the manual count days, to allow for adjustment for day to day variation. These control counts were used for sample expansion and trip reversal of the interview/postcard returns.
- 5.3.2 In addition to movements crossing enclosure cordons described above, flow and traffic composition data was also collected at a series of specified screenlines and cordons for use in the calibration and validation of the highway assignment model.
- 5.3.3 The counts at these screenlines included two way manual counts for a single day (07:00 to 19:00) accompanied by automatic traffic counters for a two week period encompassing the manual count date. This allowed adjustment for day to day variation, and brought counts to a common base.
- 5.3.4 The vehicle counts were recorded at 15 minute intervals and classified as follows:
 - Car;
 - Taxi;
 - Van (car based);
 - Van / Light Goods Vehicle;
 - HGV 2 axles;
 - HGV 3 axles;
 - HGV 4+ axles;
 - Public Service Bus;
 - Coach or Private Bus;
 - Motorcycle / Scooter;
 - Pedal Cycle; and
 - O Other.

5.4 Automatic Number Plate Recognition Survey

- 5.4.1 The Automatic Number Plate Recognition (ANPR) survey figures used for the development of the Hampshire Evidence Base² were uplifted appropriately in order to be indicative of the 2015 travel patterns. These surveys estimate the traffic movements passing through the study area via the motorways, as these movements were not intercepted in the RSI programme.
- 5.4.2 An Automatic Number Plate Recognition (ANPR) survey was undertaken to estimate the traffic movements passing through the study area via the motorways, as these movements were not intercepted in the RSI programme.
- 5.4.3 Details of the Automatic Number Plate Recognition (ANPR) survey could be found in the relevant report (Transport for South Hampshire Evidence Base, Road Traffic Model Calibration and Validation Working Paper 9, September 2011).

² Transport for South Hampshire Evidence Base, Road Traffic Model Calibration and Validation Working Paper 9, September 2011

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Pag

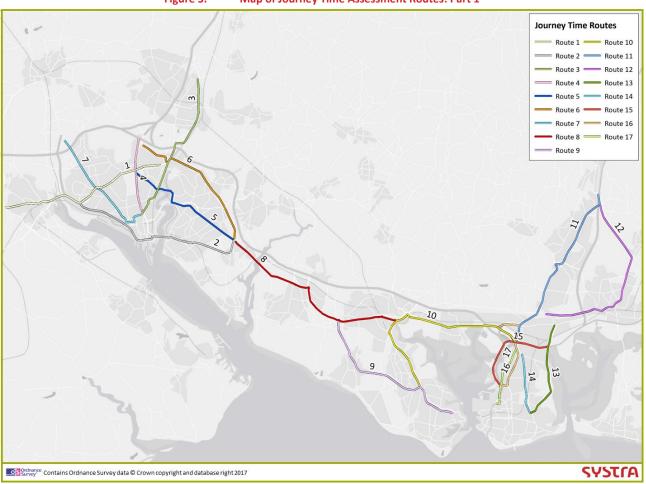
5.5 Journey Time

5.5.1 Journey times for 25 routes, in both directions, were obtained from the TrafficMaster 2014 dataset. The Part 1 routes are the same routes as those used for the 2010 Base Year (but using the 2014 data), and the Part 2 routes are new routes. These are listed in Table 9.

NO.	SET	MAP ID	DESCRIPTION	DISTANCE (KM)
1	Part 1 – 2010 routes	1	A336 RINGWOOD ROAD - A35 BURGESS ROAD	10.85
2	Part 1 – 2010 routes	2	A35 MILLBROOK ROAD WEST - A3025 HAMBLE LANE	11.44
3	Part 1 – 2010 routes	3	A33 DORSET STREET - A335 TWYFORD ROAD	9.98
4	Part 1 – 2010 routes	4	A33 DORSET STREET - A33	4.84
5	Part 1 – 2010 routes	5	A3024 BURSLEDON ROAD - A33 THE AVENUE	8.21
6	Part 1 – 2010 routes	6	A27 WEST END ROAD - A27 BASSETT GREEN ROAD	9.47
7	Part 1 – 2010 routes	7	A3024 BRUNSWICK PLACE - A3057 ROMSEY ROAD	7.91
8	Part 1 – 2010 routes	8	A27 WESTERN WAY - A27 BRIDGE ROAD	12.49
9	Part 1 – 2010 routes	9	A32 MUMBY ROAD - B3334 TITCHFIELD ROAD	10.71
10	Part 1 – 2010 routes	10	A32 FAREHAM ROAD - A27 WESTERN ROAD	12.57
11	Part 1 – 2010 routes	11	A397 NORTHERN ROAD - A3 LONDON ROAD	10.93
12	Part 1 – 2010 routes	12	B2177 PORTSDOWN HILL ROAD - B2149 HAVANT ROAD	11.74
13	Part 1 - Portsmouth	1	A2030 VELDER AVENUE - A2030 EASTERN ROAD	6.29
14	Part 1 - Portsmouth	2	A288 MILTON ROAD - A288 COPNOR ROAD	3.86
15	Part 1 - Portsmouth	3	M275 - A27	5.90
16	Part 1 - Portsmouth	4	A2047 KINGSTON CRESCENT - A3 SOUTHAMPTON ROAD	6.05
17	Part 1 - Portsmouth	5	A3 MARKETWAY - A27 WESTERN ROAD	6.02
18	Part 2 – 2015 new	1	M3 Junction 11 - A32	10.08
19	Part 2 – 2015 new	2	M27 Junction 2 - A303	33.87
20	Part 2 – 2015 new	3	M27 Junction 2 - A34	27.46
21	Part 2 – 2015 new	Sec 1	Six Dials Junction to Windhover Roundabout	5.72
22	Part 2 – 2015 new	Sec 2	M27 Junction 7 to M3 Junction 11	14.67
23	Part 2 – 2015 new	Sec 3	M27 Junction 10 - M3 Junction 11	23.99

Table 9. List of Journey Time Routes

Solent Transport Model


Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 24/77

SYSTIA

NO.	SET	MAP ID	DESCRIPTION	DISTANCE (KM)
24	Motorway		M27 Junction 3 – Junction 11	28.45
25	Motorway		M3 Junction 8 – Junction 14	32.23

5.5.2 Figure 5 to Figure 9show the locations of the routes.

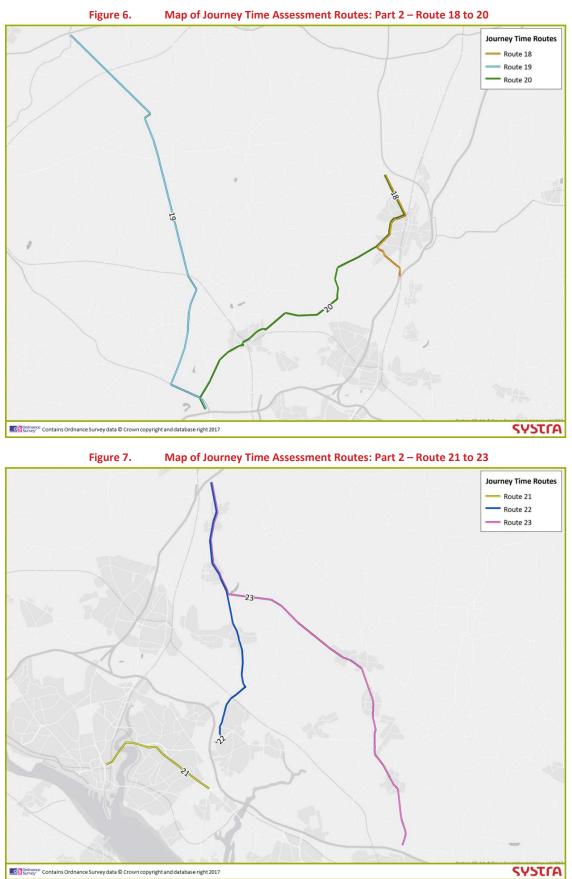
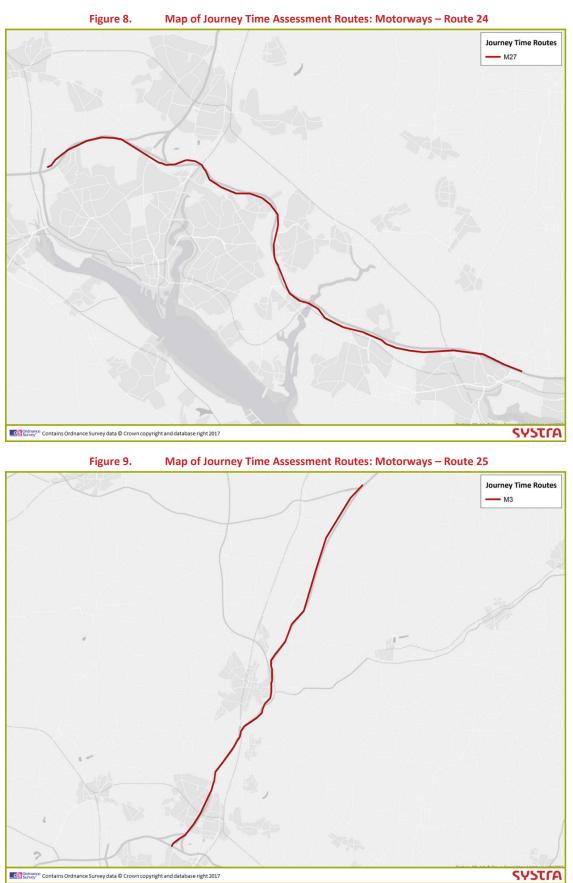


Figure 5. Map of Journey Time Assessment Routes: Part 1

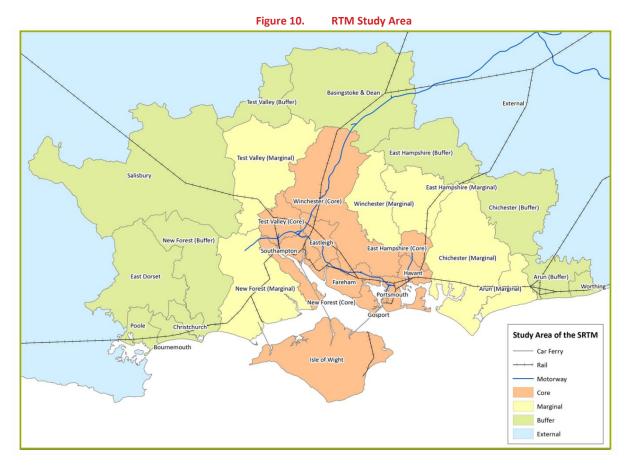
Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 25/77



Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 26/77

Solent Transport	: Model

Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 27/77


6. NETWORK DEVELOPMENT

6.1 Introduction

6.1.1 This chapter summarises the network building process, including how the basic structure of the network was developed, the data sources used and methodologies adopted.

6.2 Network Structure

- 6.2.1 The RTM network is sub-divided into four regions which differ by zone aggregation and modelling detail, as follows:
 - Core Fully Modelled Area (detailed zoning);
 - Marginal Fully Modelled Area (normally based on census MSOAs);
 - Buffer Area (zones based on Districts); and
 - External (zones based on Districts and Counties).
- 6.2.2 Figure 10 shows the four regions of the study area.

6.2.3 The core fully modelled area is the area which will have the finest level of detail in the zoning and, for the RTM, a simulation network representation. The core modelled area includes full

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 28/77

junction modelling. The core fully modelled area of the traffic model will include all Motorways, A roads, B roads and minor roads and other roads carrying high volumes of traffic.

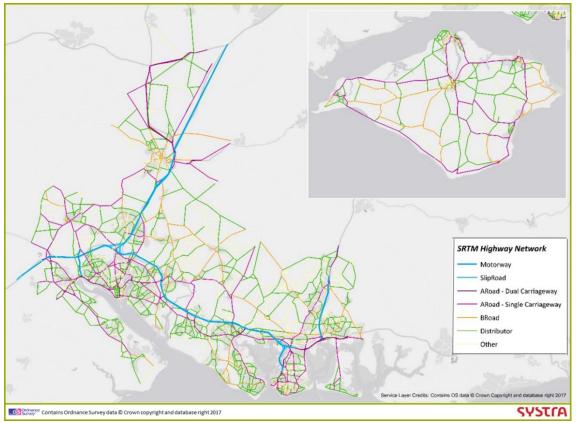
- 6.2.4 The marginal fully modelled area includes all motorways, A roads and B roads along strategic routes.
- 6.2.5 Within the buffer area, which includes all motorways and A roads along strategic routes, capacity restraint is based on flow delay curves.
- 6.2.6 In the external area fixed speeds are modelled along each link. The external area is a skeletal network, covering main routes into the sub-region. It includes only Motorways and major A roads.
- 6.2.7 The SRTM zone system has been developed following current guidance principles. The zone system has been designed to satisfy the requirements of all of the models within the model suite. Throughout the development process the zoning system has been reviewed by Solent, and amended accordingly.

6.3 Simulation Area Coding

- 6.3.1 This section describes how the following main elements of the simulation area were coded:
 - Network structure;
 - Cruise speeds;
 - Speed / flow relationships;
 - Traffic signal coding;
 - Saturation flows;
 - Gap acceptance; and
 - Bus routes and bus lanes.

Network Structure

- 6.3.2 The coding of the simulation network followed a systematic procedure designed to ensure consistent coding across the Solent network. The coding was undertaken within pre-defined parameters and constraints so that each link and junction type is coded in a consistent manner, independent of the analyst.
- 6.3.3 Initially a basic node-link network structure was coded, based on an ITN layer and associated coordinates. The procedure uses a detailed source network onto which junction coding can be superimposed, in this case road mapping and aerial photography, all sourced via web based portals.
- 6.3.4 Following on from the basic network structure, junctions are coded. The process uses a basic set of assumptions relating to saturation flows and cruise speeds that provides coders with limited and consistent options in coding individual junctions. It also adopts conventions on saturation flows and GAP parameters at different junction types. The coding is undertaken within a spreadsheet environment with cross reference made to aerial photography and mapping associated with each junction.
- 6.3.5 The use of this technique improves both coding speed and accuracy.


Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 29/77

6.3.6 Links are defined according to the following classification:

- Motorway;
- Slip road;
- A Road dual carriageway;
- A Road single carriageway;
- B Road;
- Distributor Road (generally over 4m wide);
- Other Road (generally less than 4m wide);
- Buffer; and
- Spigot (Linking to Centroid Connectors).
- 6.3.7 Figure 11 shows the RTM network by aggregated link type.

Figure 11. RTM Network by Aggregated Link Type (Core Area only)

Gap Acceptance

- 6.3.8 The following gap values have been used for the RTM simulation network;
 - 1.50 seconds for priority junctions;
 - 0.75 seconds for merges; and
 - 1.25 seconds for roundabouts.
- 6.3.9 These values have been adopted based on practical experience of calibrating and validating SATURN based sub regional models in the South of England, including the West London Sub Regional Model and the M25 Highway Assignment Model.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 30/77

Generalised Cost Formulations and Parameter Values

- 6.3.10 The generalised cost parameters that are used to influence drivers' route choice are as follows:
 - VOT and VOC by vehicle type derived from WebTAG. Appropriate growth factors have been applied to the VOT to get 2015 VOT and fuel price changes applied to get 2015 VOC. RPI applied to rebase prices to 2015;
 - Occupancies applied for 2015 as per guidance from WebTAG; and
- 6.3.11 Values converted to pence per minute/pence per kilometre as required by SATURN.

Bus Routes and Bus Lanes

6.3.12 Bus lanes are coded within the simulation area, the locations of which were identified through road mapping and aerial photography sourced via web based portals and Traffic Road Orders (TRO) data.

6.4 Network Checking Process

- 6.4.1 At the outset of the network building process standard procedures were developed in order to minimise the incidence of serious errors later in the process, and a consistent coding framework developed. This included the specification of the structure of the network to be coded within the fully modelled area (the SATURN simulation area), link types and other key assumptions such as gap acceptance and saturation flow rates. Whilst changes to the network structure can occur during the network development process, spending time at the outset to determine the scope of the task and clarifying key assumptions within the coding team is beneficial. The coding framework ensures consistency of approach to coding by the coding team. In addition the need to measure link lengths, which is a common source of error, has been removed as this information is pre-coded at the outset using GIS.
- 6.4.2 Whilst the approach seeks to make the coding process more efficient and less error-prone, the following is a basic checklist of items that has been designed to further minimise problems during network development:
 - check for appropriate junction types;
 - check that the appropriate number of entry lanes have been coded and that flaring of approaches, where appropriate, are accounted for;
 - check that turn restrictions have been correctly identified (these may vary by time period);
 - check that one-way roads and no entries have been correctly specified;
 - check that saturation flows are appropriate (particularly if turn rates appear excessively high or low compared to straight ahead);
 - check that link lengths, link types and cruise speeds for both directions of a link are consistent, and that the link type and cruise speed coding does not vary unjustifiably along a series of links; and
 - compare crow-fly link lengths against actual lengths and check that the coded link lengths in the core modelled area for links greater than 500m in length are not greater than 1.3 times the crow-fly distance, and inspect links which fall outside this range.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 31/77

7. TRIP MATRIX DEVELOPMENT

7.1 Introduction

7.1.1 This section describes the methodology for the development of the base year trip matrices. These matrices were later subjected to matrix estimation as part of the process of calibrating the model; the matrix estimation process and results are reported in Section 8.2. The matrices described in this section are referred to as 'prior' matrices.

7.2 Summary of Base Year Matrix Construction

- 7.2.1 The key steps in developing the base year matrices were:
 - Development of the partial matrices;
 - Development of trip ends;
 - Development of origin / destination demand; and
 - Development of the one hour RTM assignment matrices.
- 7.2.2 The development of origin/destination demand has three components, corresponding to the three different types of movement that are being modelled, as shown in Table 10.

AREA	CORE	MARGINAL	BUFFER	EXTERNAL
Core FMA	Full	Full	Full	Full
	[GrM/GD]	[GrM/GD/ NHTM]	[GrM/GD/ NHTM]	[GrM/GD/NHTM]
Marginal	Full	Full	Full	Full
FMA	[GrM/GD/NHTM]	[GrM / ANPR]	[GrM/ ANPR]	[GrM / ANPR/NHTM]
Buffer	Full [GrM/GD/ NHTM]	Full [GrM/ ANPR]	Through FMA [ANPR]	Through FMA [ANPR]
External	Full	Full	Through FMA	Through FMA
	[GrM/GD/NHTM]	[GrM / ANPR]	[ANPR]	[ANPR]

Table 10. Matrix Development Method Summary Demand by Modelled Area

Abbreviations: FMA – Full Modelled Area

GrM – Gravity Model

JTW – Census Journey to Work matrix

ANPR – Automatic Number Plate Recognition surveys

GD- Gateway Demand ANPR – Automatic Number Plate Recognition surveys

NHTM- North Hampshire Traffic Model

7.2.3 The table shows the coverage of the base year demand for cars, LGVs and HGVs. The base year demand in the Core and Marginal Fully Modelled Areas (FMAs) is modelled in full. Although the SRTM is only configured to model the Core FMA in detail, movements to and from the FMA from the marginal areas are influenced not only by travel costs within the FMA but also those in the marginal area that surrounds it. In addition the Local Economic Impact Model needs the travel

Solent Transport Model			
Road Traffic Model	102891		
Model Development and Validation Report	12/12/2017	Page	32/77

cost responses from the RTM in both the Core and Marginal FMA to establish changes in population and employment. Trips to and from the Buffer and External areas and not terminating in the FMA are not modelled in full; only those trips that travel through the FMA are modelled.

- 7.2.4 As also shown in the table, the development of origin/destination demand is different for the three areas described above:
 - Trips to/from the Core FMA were developed using a Gravity model (GrM);
 - Trips between Winchester and the Core area of the NHTM estimated during the matrix synthesis process were replaced with the growthed demand from NHTM model.
 - through-FMA trips with both their origin/destination trip ends either in the Buffer and External areas were developed by matching number plates from the Automatic Number Plate Recognition (ANPR) surveys.
- 7.2.5 These processes are described in Section 7.5.
- 7.2.6 The origin/destination demand matrices are defined at the period level: AM (07:00-10:00), IP (10:00-16:00), PM (16:00-19:00), and Off Peak (19:00-07:00). They include four home-based and two non home-based personal trip purposes for car, as well as LGV and HGV trip matrices. The origin/destination trip matrices were developed in person-trip units before being converted to one-hour RTM prior matrices.
- 7.2.7 The RTM prior matrices were obtained from the corresponding demand matrices for cars, LGVs and HGVs by:
 - applying peak-hour or average hour factors as appropriate;
 - applying trip purpose-specific vehicle occupancy factors to convert the person matrices to vehicle matrices;
 - applying passenger car units (PCUs) to the HGV demand matrices; and
 - aggregating the demand matrices into the assignment purposes, as shown in Table 11.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 33/77

Table 11. Trip Purpose Segmentations

VEHICLE TYPE	ABBREVIATION	OD DEMAND MATRICES	RTM ASSIGNMENT MATRICES
Car	НВВ	HB Employers Business	Employers Business
Car	NHB	Non HB Employers Business	Employers business
Car	HBW	HB Work	
Car	НВЕ	HB Education	Commuting and Other
Car	НВО	HB Other	commuting and other
Car	NHO	NHB Other	
LGV	LGV	Light Goods Vehicles	LGVs
HGV	HGV	Other Goods Vehicles	OGVs

7.2.8 Following the development of the prior matrices a validation exercise was undertaken to determine whether matrix estimation was required. The need for matrix estimation was confirmed and this process, to refine the prior matrices and better match assigned flows to counts, is described in Section 8.

7.3 **Development of Partial Matrices**

- 7.3.1 The 2015 partial matrices were created by:
 - 0 expanding the original (2010) enclosure data to new (2015) ATC controls for the movement within the Mainland;
 - 0 expanding the original (2010) Ferries data to the new (2015) Ferries Data for the movements from/to the Mainland and the Isle of Wight (and vice versa);
 - 0 adding 2013 the IoW Matrix expanded to the new (2015) ATC controls for the movements within the Isle of Wight (IoW).
- 7.3.2 New ATC expansion factors replaced those calculated in 2010. These factors were calculated at a site level considering all the possible direction, period and vehicle type combinations.
- 7.3.3 The methodology has some limitations as it is based on the 2010 pattern of OD movements. Any potential variations of these movements could be captured by the matrix estimation process.
- 7.3.4 The vehicle types and purposes from the RSI records required aggregation to the Solent matrix segments; These are shown in Table 12 and Figure 12.

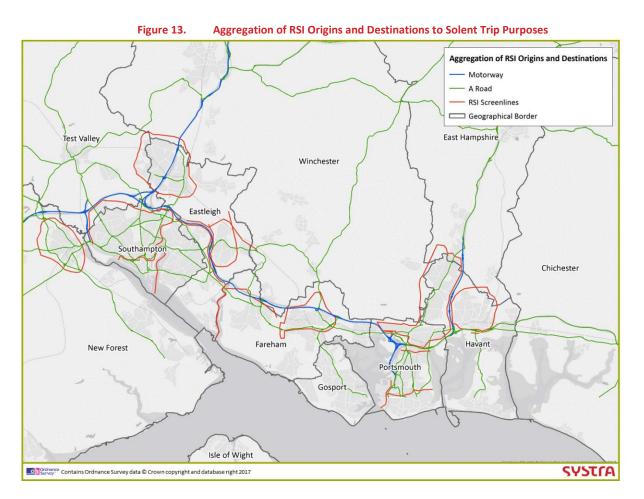
Table 12. Aggregation of RSI Vehicle Types to Solent Vehicle Types

RSI VEHICLE TYPE	SOLENT VEHICLE TYPE
1 Car	Car
2 Taxi	Car
3 Van (Car Based)	Car
4 Van/ Light Goods	LGV
5 Other Goods Vehicle 1	HGV
6 Other Goods Vehicle 2	HGV
7 HGV (2 Axles)	HGV
8 HGV (3 Axles)	HGV
9 Large HGV (4+ Axles)	HGV

Figure 12.

Aggregation of RSI Origins and Destinations to Solent Trip Purposes

		RSI Destination Purpose								
		Home	Holiday Home/hotel	Normal place of work	Employers business	Education	Shopping	Personal business	Visit friends	Recreation/Leisure
	Home	HBO	HBO	HBW	HBB	HBE	HBO	HBO	HBO	HBO
	Holiday Home/hotel	HBO	NHO	NHB	NHB	NHO	NHO	NHO	NHO	NHO
Soc	Normal place of work	HBW	NHB	NHB	NHB	NHO	NHO	NHO	NHO	NHO
und	Employers business	HBB	NHB	NHB	NHB	NHO	NHO	NHO	NHO	NHO
Ë	Education	HBE	NHO	NHO	NHO	NHO	NHO	NHO	NHO	NHO
Origin Purpose	Shopping	HBO	NHO	NHO	NHO	NHO	NHO	NHO	NHO	NHO
RSI (Personal business	HBO	NHO	NHO	NHO	NHO	NHO	NHO	NHO	NHO
"	Visit friends	HBO	NHO	NHO	NHO	NHO	NHO	NHO	NHO	NHO
	Recreation/Leisure	HBO	NHO	NHO	NHO	NHO	NHO	NHO	NHO	NHO


es	Home Based Work	HBW		
sod	Home Based Employers Business	HBB		
Pur	Home Based Work Home Based Employers Business Non Home Based Employers Business			
Home Based Education Home Based Other (leisure, personal business)		HBO		
Ë	Non Home Based Other	NHO		

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 35/77

- 7.3.5 The sector system used for partial matrix construction (Figure 13) is defined by the RSI screenlines and other suitable boundaries, including:
 - enclosure cordons;
 - natural barriers such as the River Itchen;
 - the 'Core Area' boundary; and
 - Motorways.

7.4 Development of Trip Ends

- 7.4.1 The home-based purpose origin/destination person trip ends for zones within the FMA were produced using the following steps:
 - Home-based production trip ends were estimated for all FMA zones by applying the NTEM production trip rates to the population data. These trip ends represent the 'outbound' trip only;
 - Home-based attraction trip ends within the FMA were estimated by applying the NTEM trip attraction trip rates to the employment data, and scaling total attractions to match total productions for each purpose, mode (including active modes), time period and car availability across the FMA;

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 36/77

- The Outbound/Return factors were used to calculate the ratio of from-home and to-home trips in each time period; these ratios were used to generate return trip ends from the NTEM-based outbound trip ends;
- Origin/Destination trip ends were then derived from the production/attraction trip ends by re-applying the Outbound/Return factors.
- 7.4.2 The non-home-based purpose origin/destination trip ends for zones within the FMA were developed using home-based to non-home based trip rate factors derived from National Travel Survey (NTS) data which has information on how many non-home based trips are made after or before any home based trips.
- 7.4.3 A full set of origin/destination trip ends for all model zones and purposes was therefore produced by combining these three sets of trip ends (FMA home based, FMA non-home based and all zones outside the FMA).

7.5 Origin/Destination Demand Matrices

- 7.5.1 The origin/destination matrices were created separately for two parts of the matrix: the Core FMA, and the Marginal FMA and the Buffer/External areas (see Table 13):
 - a Gravity model (GrM) was used for the Core FMA demand;
 - trip ends obtained from TEMPRO were used during the furnessing process.
 - ANPR Number plate matching based technique was used for the through-FMA external demand.
 - trips From/To Winchester were compared and replaced if it was considered proper using the uplifted demand from NHTM as it is considered to be a more reliable estimate of these trips.
 - Demand from/to airports and ports (Gateway Demand) was considered for the External areas

Core FMA Demand - Destination Choice Model

- 7.5.2 The trip distribution for the development of the synthetic matrices was derived using a gravity model. Person trip matrices were synthesised and then converted to vehicle matrices using the vehicle occupancy factors derived from WebTAG 2016.
- 7.5.3 The occupancy factors were assumed to be the same for all time periods. Table 13 presents the Occupancy factors by trip purpose.

HBW	НВВ	НВЕ	НВО	NHB	NHO	
1.113	1.128	1.697	1.512	1.181	1.467	

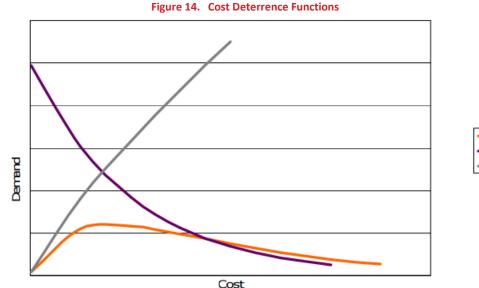
Table 13. Vehicle Occupancies by Trip Purpose

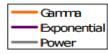
- 7.5.4 The gravity model considered:
 - the generalised cost of highway travel between two zones;
 - trip ends data from TEMPRO;
 - observed sector-to-sector movements.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 37/77

- 7.5.5 The initial phases of the synthetic matrix development costs derived from the Solent Strategic Transport Model (SSTM) model were used. Later, when costs from the RTM became available, the SSTM costs were replaced.
- 7.5.6 The synthetic matrices were developed using all the observed destination choices from the RSI surveys to estimate the parameters of the gravity model. Synthetic matrix development can be broken down into three procedures: estimation, calibration and application of a destination choice model. For clarity:
 - "estimation" refers to the statistical estimation of model parameters and their associated standard errors;
 - "calibration" refers to the adjustment of model parameters post-estimation to ensure that the model forecasts adhere to a set of constraints that were not imposed during estimation, i.e. the trip end constraints and sector-to-sector trip observations from the RSI surveys; and
 - "application" refers to the application of the calibrated parameters to populate the matrices and, as necessary, merge these matrices with partial matrices to represent some unrepresented external-to-external trips, particularly the through-FMA demand.
- 7.5.7 An important aspect of the estimation process was the analysis of variation in travel behaviour across different time periods. Parameters were calibrated to match observed trip cost distributions, segmented by period and purpose.
- 7.5.8 A Gamma distribution considered that best represents the travel behaviour based on the generalised cost for trips between two zones.
- 7.5.9 The cost deterrence function (Gamma distribution) requires manual calibration and takes the form:

$$F(C_{ij}) = C_{ij}^{X_1} \exp(X_2 C_{ij})$$


Where $F(C_{ij})$ is the cost deterrence from zone i to zone j, C_{ij} is the generalised cost from zone i to zone j and X_1 and X_2 are coefficients to be calibrated.


7.5.10 The form of the cost deterrence function is shown in Figure 14.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 38/77

ϛϒϧτιΑ

- 7.5.11 According to WebTAG³ doubly constrained models should be used for commuting and education in order to reflect the relative confidence in the measures of attraction for commuting and educational trips, as well as the relatively fixed nature of these attraction values in the short term. Other purposes such as shopping, social and leisure trips are typically modelled as singly production-end constrained. For these purposes, the trip end factors reflect the attraction of destinations, not the actual numbers of trips attracted.
- 7.5.12 For a doubly constrained trip distribution zonal origins and destinations match trip ends.
- 7.5.13 For a singly constrained trip distribution zonal destinations match trip ends.
- 7.5.14 For the calibration of the cost deterrence function a doubly or singly constrained trip distribution was used. Table 17 presents the optimised X1 and X2 values of the cost deterrence function.
- 7.5.15 Trip Cost Distributions for the doubly or singly constrained demand were calibrated against the trip end model.
- 7.5.16 The following the following trips were doubly constrained during the calibration process
 - 0 Car Home Based Work (HBW);
 - 0 Car Home Base Education (HBE);
 - 0 LGVs;
 - HGVs. 0
- 7.5.17 The following trips were considered simply constrained during the calibration process
 - 0 Car Home Based Business (HBB);
 - 0 Car Home Based Other (HBO);
 - 0 Car Non-Home Based Business (NHB);
 - 0 Car Non-Home Based Other (NHO).

³ TAG Unit M2 Variable Demand Modelling 4.6 Trip Frequency

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 3

- 7.5.18 A third constraint was applied to consider the `fully observed' sector to sector movements. Zone to zone matrices were factored based on factors computed at the sector level.
- 7.5.19 The "fully observed" movements represent the observed movements of the Road Survey Interviews(RSI). The RSI surveys from a previous study4 were used and uplifted properly in order to be indicative of the 2015 travel patterns.
- 7.5.20 Zero survey movements were not constrained.
- 7.5.21 Due to the lack of data in Isle of Wight(IoW), movements to the IoW were spread across destinations and movements from the IoW were spread across origins.
- 7.5.22 Table 14, 0, and 0 present a comparison of the relative and cumulative frequency between the observed and the synthesised demand.
- 7.5.23 Generally, there is a good fit of observed and modelled trip cost distributions.

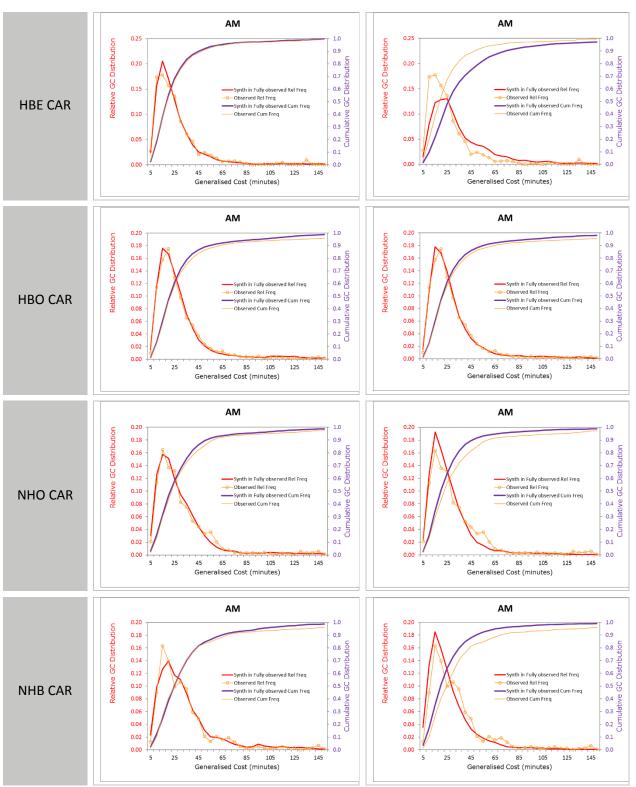
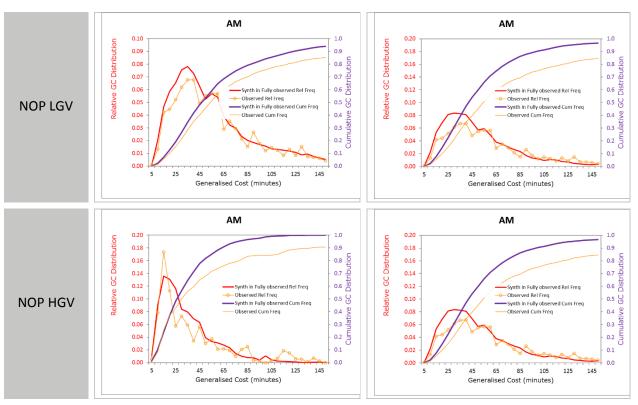

PURPOSE SINGLY OR DOUBLY TRIPLY VEHICLE AM AM 0.16 1.0 0.16 1.0 GC Distribution Relative GC Distribution 0.9 0.9 0.14 0.14 0.6 Distribution 0.8 ... 0.7 ... 0.12 0.12 0.7 Distril 0.10 0.10 Synth in Fully observed Rel Fre Synth in Fully observed Rel Fre Relative erved Rel Freg Oł 0.5 G 0.08 0.5 G 0.08 HBW CAR ynth in Fully obser Observed Cum Freq Synth in Fully obs 0.4 0.0 nlative 0 0.4 vo d Cum Fred 0.06 0.06 0.04 0.04 0.2 D 0.2 LD 0.02 0.02 0.1 0.1 0.0 0.00 0.0 0.00 25 45 65 85 105 125 145 25 45 65 85 105 125 145 5 5 Generalised Cost (minutes) Generalised Cost (minutes) AM AM 0.12 0.12 1.0 1.0 GC Distribution GC Distribution 0.9 0.9 Distribution 0.10 0.10 0.8 Libution 0.08 0.08 Distr Synth in Fully observed Rel F Synth in Fully observed Rel Fre Relative **Palative** erved Rel Freq 0.5 G -Ot 0.5 G 0.06 0.06 **HBB CAR** Synth in Fully of Synth in Fully observed Cum F rued Cum Fr 0.4 0.0 nlative (d Cum Fred d Cum Frea 0.04 0.04 0.2 LID 0.2 D 0.02 0.02 0.1 0.1 0.0 0.0 0.00 0.00 5 25 45 65 85 105 125 145 5 25 45 65 85 105 125 145 Generalised Cost (minutes) Generalised Cost (minutes)

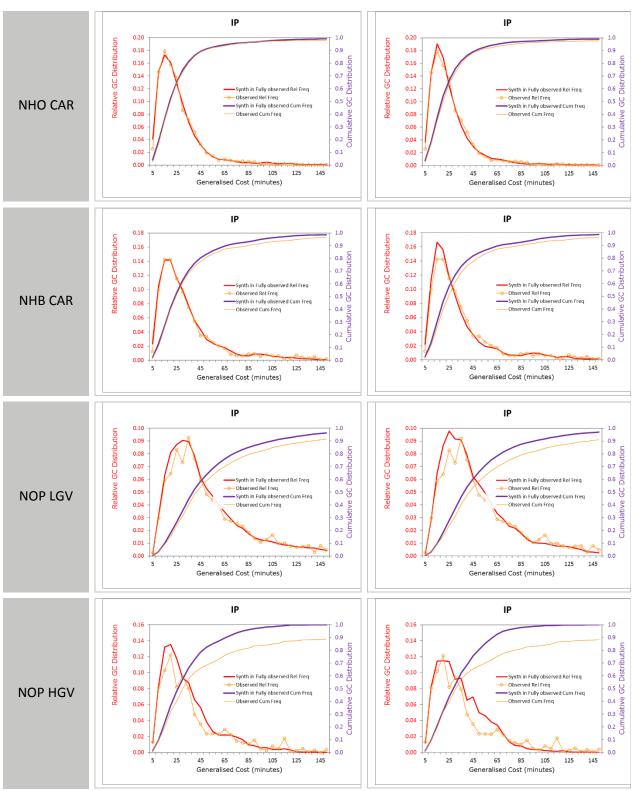
Table 14. Synthesised vs Observed relative and cumulative frequency distribution AM

⁴ Transport for South Hampshire Evidence Base, Road Traffic Model Calibration and Validation Working Paper 9, September 2011



Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 41/77

PURPOSE VEHICLE	SINGLY OR DOUBLY	TRIPLY
HBW CAR	IP 000 010 010 010 010 010 010 01	IP 000 010 010 010 010 010 010 01
HBB CAR	IP 0.14 0.12 0.00 0.	IP 0.14 0.12 0.10 0.00 0.
HBE CAR	IP 000 010 010 010 010 010 010 01	IP 0.10 0.13 0.16 0.14 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.17,153 0.16 0.17,153 0.16 0.17,153 0.16 0.17,153 0.16 0.17,153 0.16 0.17,153 0.16 0.17,153 0.16 0.17,153 0.16 0.17,153 0.16 0.17,153 0.16 0.17,153 0.16 0.17,153 0.16 0.17,153 0.16 0.17,153 0.16 0.16 0.17,153 0.16 0.16 0.17,153 0.16 0.16 0.17,153 0.16 0.16 0.17,153 0.16 0.16 0.16 0.17,153 0.16 0.16 0.17,153 0.16 0.16 0.17,153 0.16 0.16 0.17,153 0.16 0.16 0.5 UP 0.10 0.05served Rel Freq 0.10 0.16 0.5 UP 0.10 0.5 UP 0.10 0.2 UP 0.10 0.2 UP 0.10 0.2 UP 0.10 0.2 UP 0.10 0.2 UP 0.10 0.10 0.12 0.14 0.00 0.15 0
HBO CAR	UP 0.10 0.12 0.13 0.14 0.15 0.14 0.16 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.5 DO 0.6 DO 0.5 DO 0.6 JO 0.7 TISIO 0.5 DO 0.4 A 0.9 UP 0.6 Streed Rel Freq 0.6 Streed Rel	IP 0.10 0.13 0.16 0.14 0.10 0.14 0.10 0.14 0.10 0.14 0.14 0.14 0.14 0.15 0.14 0.14 0.15 0.14 0.15 0.14 0.05 0.

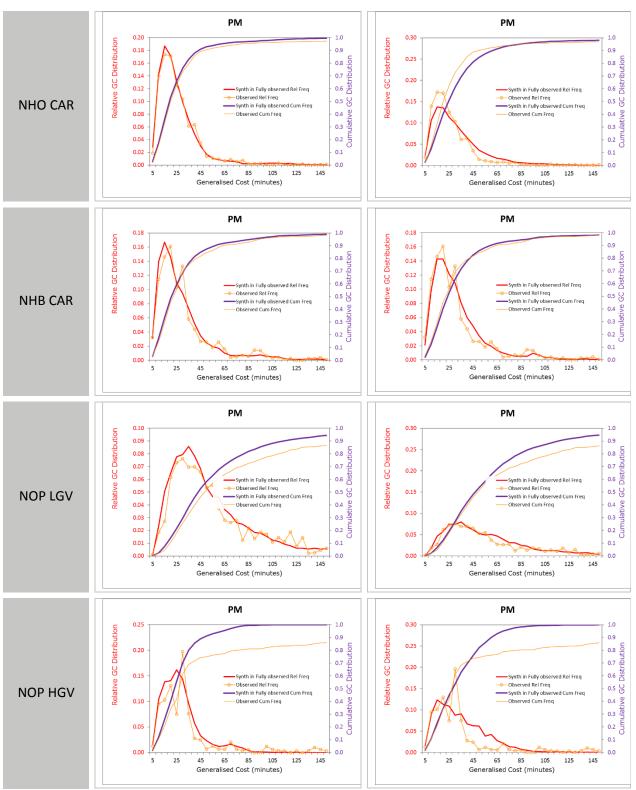

Table 15. Synthesised vs Observed relative and cumulative frequency distribution IP

Solent Transport N	/lodel
--------------------	--------

Road Traffic Model 102891 Model Development and Validation Report

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 44/77

PURPOSE VEHICLE	SINGLY OR DOUBLY	TRIPLY
HBW CAR	PM 0.16 0.14 0.12 0.08 0.09 0.	PM 0.16 0.14 0.12 0.05 0.06 0.09 0.06 0.07 0.19 0.06 0.07 0.06 0.07 0.66 0.0 0.66 0.7 0.66 0.09 0.66 0.7 0.66 0.7 0.66 0.7 0.66 0.7 0.66 0.7 0.66 0.66 0.7 0.66 0.66 0.7 0.66 0.125 1.45 0.06
HBB CAR	PM 000 010 010 010 010 010 010 01	PM
HBE CAR	PM 020 0.13 0.14 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.14 0.5 OP 0.4 9, 09 0.7 (150 0.7 (150 0.7 (150 0.7 (150) 0.8 0) 0.7 (150) 0.12 0.12 0.15 0.14 0.5 OP 0.8 0) 0.7 (150) 0.12 0.12 0.12 0.05 OP 0.05 OP 0.3 0) 0.12 0.05 OP 0.05 OP	PM 0.0 0.10 0.12 0.05 0 0.5 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0
HBO CAR	PM 000 010 010 010 010 010 010 01	PM 0.10 0.13 0.16 0.14 0.10 0.14 0.10 0.14 0.10 0.14 0.10 0.14 0.14 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.17 0.16 0.09 0.03 0.07 0.16 0.05 0.


Table 16. Synthesised vs Observed relative and cumulative frequency distribution PM

Solent Transport Model	

Road Traffic Model 102891 Model Development and Validation Report

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 46/77

SYST(A

	HBW	HBB	HBE	НВО	NHB	NHB	LGV	HGV
АМ	X1 = 0.175	X1 = -1.3	X1 = -0.8	X1 = -0.3	X1 = -0.7	X1 = -0.9	X1 = 0.425	X1 = -0.19
	X2 = -0.075	X2 = 0	X2 = -0.1	X2 = -0.1	X2 = -0.05	X2 = -0.05	X2 = -0.05	X2 = -0.09
IP	X1 = -0.6	X1 = -0.2	X1 = -1	X1 = -0.1	X1 = -0.7	X1 = -1	X1 = 0	X1 = 0.3
	X2 = -0.05	X2 = -0.05	X2 = -0.05	X2 = -0.1	X2 = -0.05	X2 = -0.05	X2 = -0.05	X2 = -0.1
ОР	X1 = -0.6	X1 = -0.2	X1 = -1	X1 = -0.1	X1 = -0.7	X1 = -1	X1 = 0	X1 = 0.3
	X2 = -0.05	X2 = -0.05	X2 = -0.05	X2 = -0.1	X2 = -0.05	X2 = -0.05	X2 = -0.05	X2 = -0.1
РМ	X1 = -0.4	X1 = -0.2	X1 = -1	X1 = -0.2	X1 = -0.9	X1 = -0.2	X1 = 0.3	X1 = 0.2
	X2 = -0.05	X2 = -0.05	X2 = -0.05	X2 = -0.1	X2 = -0.05	X2 = -0.1	X2 = -0.05	X2 = -0.1

Table 17. Gravity model calibration parameters

Utilisation of Demand from North Hampshire Transport Model (NHTM)

7.5.24 Trips between Winchester and the Core area of the NHTM estimated during the matrix synthesis process were replaced with the growthed demand from NHTM model. The 2010 NHTM demand was uplifted by 2% as an estimate of the year 2015.

Through FMA Demand – Number Plate Matching

- 7.5.25 Trips with both the origin and destination trip ends outside the FMA but going through the FMA were intercepted using ANPR Surveys on the key routes to Urban South Hampshire, the A27, A3(M), M3, A36 and M27 (Section 5.4). A number plate matching exercise was then used to establish the through-FMA demand. The ANPR data was collected for three classes of vehicles, Cars LGVs and HGVs.
- 7.5.26 The 2010 ANPR trip end data was uplifted and furnessed in order to match the 2015 TRADS data. Census Journey to Work distributions for trips travelling through the ANPR catchment were used to split the trip ends across the zones beyond the ANPR sites.
- 7.5.27 Table 18 presents the ANPR through traffic vehicles by period and vehicle class.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 47/77

Table 18. ANPR Through Traffic Vehicles by Period and Vehicle Class

VEHICLE	AM (07:00-10:00)	INTER PEAK (10:00-16:00)	PM (16:00-19:00)	TOTAL (12HR)
CARS	2,308	2,157	2,386	6,851
LGV	260	220	99	579
HGV	1,099	835	751	2,685
TOTAL	3,667	3,212	3,236	10,115

Demand from Gateway Zones (Airport & Docks) from the GDM 7.6

- 7.6.1 Demand to and from 5 zones replaces synthesised values for:
 - 0 Southampton Airport;
 - Southampton Port (three zones); and 0
 - 0 Portsmouth Port (Continental & Commercial).
- 7.6.2 In order to estimate the 2015 Gateway demand, the 2010 Gateway demand matrices derived from surveys were uplifted using factors based on the growth of traffic counts.
- 7.6.3 Table 19-23 present the growth factors applied.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 48/7

Table 19. Origin Car Growth Factors

ODICINI	CAR		
ORIGIN	AM	IP	PM
SOUTHAMPTON PORT GATE 4	0.67	1.02	1.66
SOUTHAMPTON PORT GATE 10	1.59	1.22	1.14
SOUTHAMPTON PORT GATE 20	0.73	0.57	0.61
PORTSMOUTH AIRPORT	1.64	0.78	0.71
SOUTHAMPTON AIRPORT	0.92	1.12	0.96

Table 20. Origin LGV Growth Factors

ODICINI	LGV		
ORIGIN	AM	IP	PM
SOUTHAMPTON PORT GATE 4	1.11	1.57	1.06
SOUTHAMPTON PORT GATE 10	0.76	0.65	0.27
SOUTHAMPTON PORT GATE 20	1.35	1.12	0.66
PORTSMOUTH AIRPORT	0.68	0.77	0.55
SOUTHAMPTON AIRPORT	1.74	1.74	1.27

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 49/77

Table 21. Origin HGV Growth Factors

ODICINI	HGV		
ORIGIN	AM	IP	PM
SOUTHAMPTON PORT GATE 4	1.85	1.75	1.12
SOUTHAMPTON PORT GATE 10	0.85	0.82	0.93
SOUTHAMPTON PORT GATE 20	0.67	0.88	1.01
PORTSMOUTH AIRPORT	0.52	0.70	0.69
SOUTHAMPTON AIRPORT	0.96	0.78	0.55

Table 22. Destination Car Growth Factors

DESTINATION	CAR		
	AM	IP	PM
SOUTHAMPTON PORT GATE 4	1.25	0.82	1.37
SOUTHAMPTON PORT GATE 10	1.36	1.28	0.93
SOUTHAMPTON PORT GATE 20	0.95	0.82	1.01
PORTSMOUTH AIRPORT	1.09	1.28	1.01
SOUTHAMPTON AIRPORT	0.79	1.12	1.01

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 50/77

Table 23. Destination LGV Growth Factors

DESTINATION	LGV		
	AM	IP	PM
SOUTHAMPTON PORT GATE 4	1.79	1.86	1.93
SOUTHAMPTON PORT GATE 10	0.52	0.59	0.73
SOUTHAMPTON PORT GATE 20	0.88	1.12	0.58
PORTSMOUTH AIRPORT	0.82	1.43	0.70
SOUTHAMPTON AIRPORT	2.11	2.55	3.00

Table 24. Destination HGV Growth Factors

DESTINATION		HGV	
	AM	IP	PM
SOUTHAMPTON PORT GATE 4	1.33	1.24	1.10
SOUTHAMPTON PORT GATE 10	0.52	0.59	0.73
SOUTHAMPTON PORT GATE 20	0.88	1.12	0.58
PORTSMOUTH AIRPORT	0.82	1.43	0.70
SOUTHAMPTON AIRPORT	2.11	2.55	3.00

7.6.4 Table 25 presents the Gateway Demand by period and vehicle class.

Table 25. Gateway Demand Vehicles by Period and Vehicle class

VEHICLE	AM (07:00-10:00)	INTER PEAK (10:00-16:00)	PM (16:00-19:00)	TOTAL (12HR)
CARS	5,058	6,830	3,425	15,313
LGV	739	1,470	445	2,654
HGV	935	2,639	749	4,323
TOTAL	6,732	10,939	4,619	22,290

7.7 Assignment Matrices

- 7.7.1 The assignment matrices were derived from the demand matrices by:
 - aggregating the demand matrix trip purposes by assignment purposes;
 - applying period- and purpose-specific vehicle occupancy factors; and
 - applying peak hour factors calculated from the RSI and count data for the AM/PM peaks and developed average hour matrices for assignment in the inter peak periods.

The mapping from demand to assignment purposes is given in Table 11. The peak hour factors used are shown in Table 8.

- 7.7.2 The prior matrix was tested by assigning it on the network and comparing the total assigned flows and total counts (in both directions) across RSI, calibration and validation screenlines for each modelled hour.
- 7.7.3 Assignment and validation of the one hour RTM matrices showed that matrix estimation was necessary to refine the prior matrices, particularly for trips crossing the calibration screenlines and not sampled using the OD surveys. The changes after matrix estimation are carried back to the Main Demand Model.

7.8 Prior - Trip Matrix Validation

- 7.8.1 Table 26 shows the results of the RSI cordon and screenline validation analysis for each of the modelled periods for vehicles, for the prior matrix. **Appendix A** shows the validation performance of each cordon and screenline.
- 7.8.2 In both the AM and PM peak periods, over 85% of the RSI screenlines are within 15% of the observed counts, which is considered an adequate starting point to proceed to matrix estimation.

Measure	Criteria	AM Peak	Inter Peak	PM Peak
	Differences between modelled flows and counts should be less than 5% of the counts	53%	80%	73%
	Differences between modelled flows and counts should be less than 10% of the counts	83%	87%	87%
Validation	Differences between modelled flows and counts should be less than 15% of the counts	93%	97%	100%
	Differences between modelled flows and counts should be less than 20% of the counts	100%	100%	100%

Table 26. Prior Matrix – RSI Cordon and Screenline Validation: Vehicles

8. MATRIX CALIBRATION AND VALIDATION

8.1 Introduction

- 8.1.1 This chapter describes:
 - trip matrix estimation, including checks of significance of differences between prior and estimated trip matrices; and
 - trip matrix validation, including checks of screenline flow against DMRB guidelines.

8.2 Trip Matrix Estimation Process

The Purpose of Matrix Estimation

- 8.2.1 The primary purpose of matrix estimation is to refine estimates of trips not intercepted in surveys and which have therefore been synthesised. This is why counts on screenlines independent of the roadside interview cordons and screenlines are required. The refinements should be sufficiently small that they are not regarded as significant.
- 8.2.2 Matrix estimation only either increases or decreases non-zero cell values in the prior trip matrix. The technique cannot be used, therefore, to provide estimates of trips not intercepted in surveys or trips that have not been synthesised. Such situations are very rare however, as the Solent matrices are inherently "full" due to the manner in which they were constructed.

Applying Matrix Estimation

- 8.2.3 Count constraints should generally be grouped and applied at the short screenline level; these are referred to later as 'mini-screenlines'. The use of counts at individual sites as constraints has been avoided where possible. The reason for this is that the mismatch between modelled flows and counts at any one location may be due to a number of reasons and not due solely to deficiencies in the trip matrices. Where individual sites, or a small number of sites do form a screenline, the calibration criteria have been adjusted. In adjusting the prior matrices, matrix estimation may well compensate (undesirably) for other errors arising from the design of the zoning system, network structure, centroid connectors, network coding and route choice coefficients, which is why all these aspects should be checked before applying matrix estimation. Applying constraints at individual sites is likely to exacerbate the tendency of the matrix estimation procedure to compensate for deficiencies in other aspects of the model.
- 8.2.4 The calibration and RSI screenlines were subdivided into mini-screenlines. The screenlines used for matrix estimation were derived based on the principle of isolating major conurbations and activity centres, with particular emphasis on the two major, and distinct centres of Southampton and Portsmouth.

- 8.2.5 The counts used as constraints in the matrix estimation have been derived from two-week ATCs, and the vehicle type proportions for the four user classes (Car Business, Car Non Business, LGV and HGV) have been obtained from MCCs. Note because control counts were available at a three vehicle class level, the car user class needed to be divided between Car business and Car Non Business in order that matrix estimation could be applied at the Solent four user class assignment level. This was achieved by applying the Business/Non Business splits derived from the Pre Matrix Estimation assignment.
- 8.2.6 The process was undertaken using six loops between the assignment and matrix estimation. An additional process of optimising signalised junction timings was undertaken using the SIGOPT function before the first and after the sixth loop for signalised junctions for which timing data was not available.
- 8.2.7 The Matrix Estimation process was constrained using the XAMAX = 2.5 to restrict individual cell value changes to a factor of 2.5 to prevent excessive distortion of the matrix.

Matrix Estimation Process

- 8.2.8 The matrix estimation process uses the SATURN program SATME2 in conjunction with the supplementary program SATPIJA. It is based on the theoretical procedure generally referred to as ME2 Matrix Estimation from Maximum Entropy. SATME2 essentially tries to improve the fit between modelled and observed flows by selectively factoring individual cells of the input trip matrix. SATPIJA creates a file used by SATME2 which represents the proportion of trips between origin-destination pairs which uses the counted link (from SATURN Manual Section 13).
- 8.2.9 The inputs to the process are:
 - highway networks, AM, IP and PM;
 - highway prior matrices AM, IP, PM by user class; and
 - SATME2 inputs calibration counts divided into mini-screenlines.

8.3 Trip Matrix Estimation Outcomes

- 8.3.1 This section describes the trip matrices before and after matrix estimation using the following analyses:
 - matrix size by user class;
 - statistical analysis of change in trip ends;
 - statistical analysis of change in trip cost distributions.

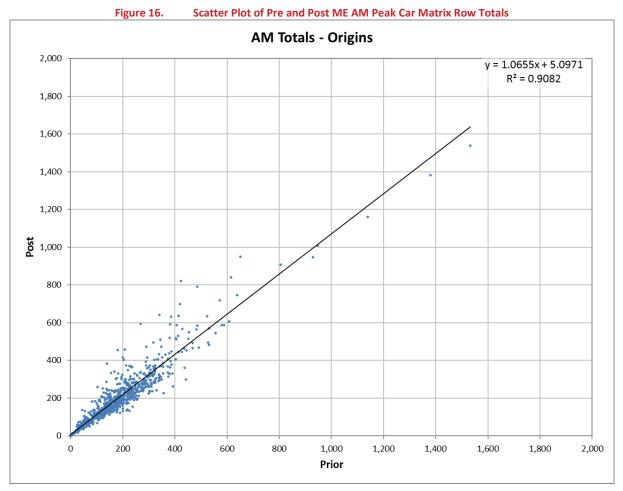
Matrix size

8.3.2 Table 27 presents matrix sizes by user class before and after matrix estimation.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 55/77

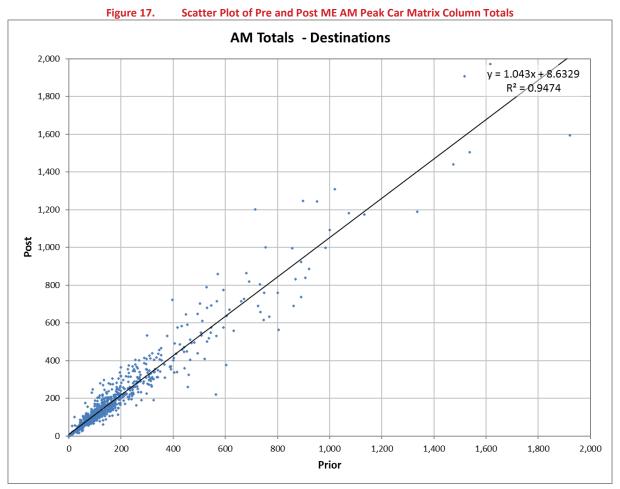
Table 27. Prior and Estimated Matrix Sizes						
	1	2	3	4	TOTAL	
USER CLASS	Car Business	Car Non Business	LGV	OGV	All Vehicles	
AM peak hour						
Prior	14,757	142,211	13,577	10,830	181,376	
Calibrated	16,344	152,625	14,381	16,354	199,703	
% Diff	11%	7%	6%	51%	10%	
Inter peak avera	age hour					
Prior	12,448	105,871	10,249	9,468	138,037	
Calibrated	13,030	112,671	11,021	12,875	149,596	
% Diff	5%	6%	8%	36%	8%	
PM peak hour						
Prior	12,133	151,982	11,604	5,704	181,423	
Calibrated	13,152	165,346	12,697	8,934	200,129	
% Diff	8%	9%	9%	57%	10%	

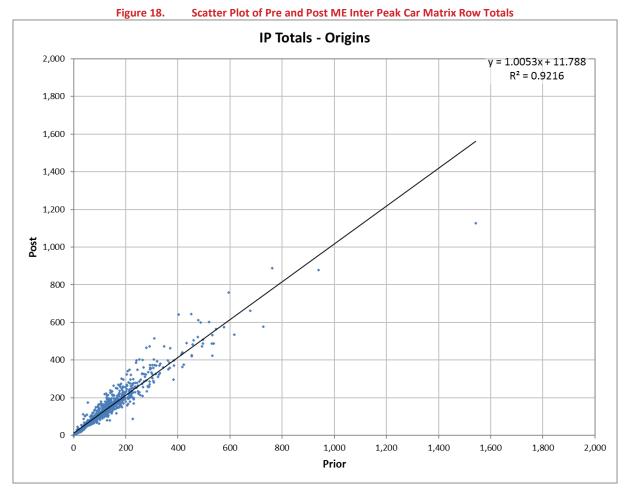
Table 27. Prior and Estimated Matrix Sizes

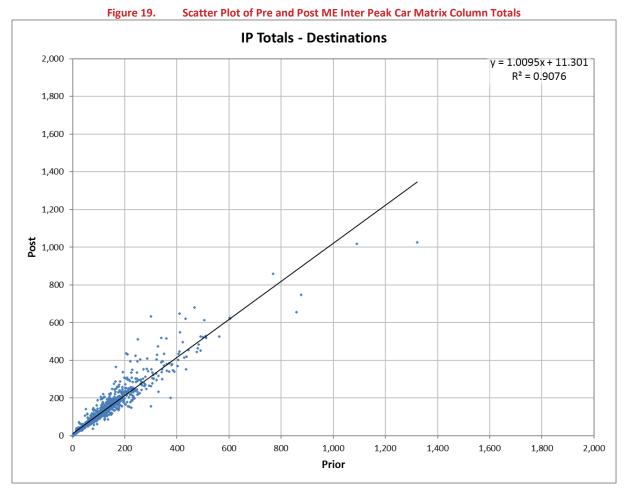

Analysis of Matrix Differences Pre/Post Matrix Estimation

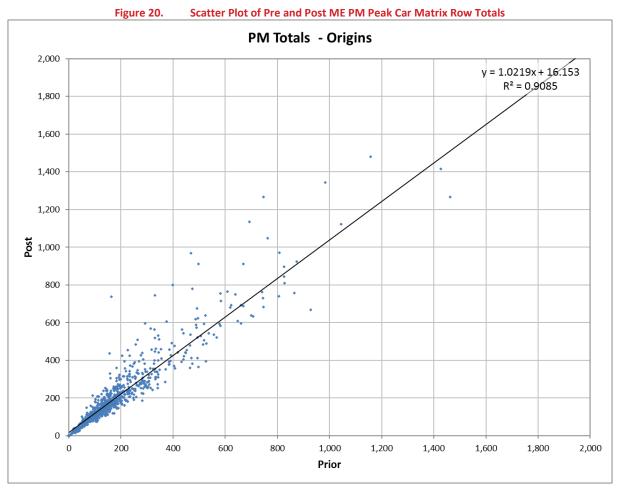
8.3.3 Figure 16-26 show scatter plots of the pre and post ME matrix row and column totals by period for cars. All time periods show a good correlation with R² values, and the graph intercept is reasonably close to zero.

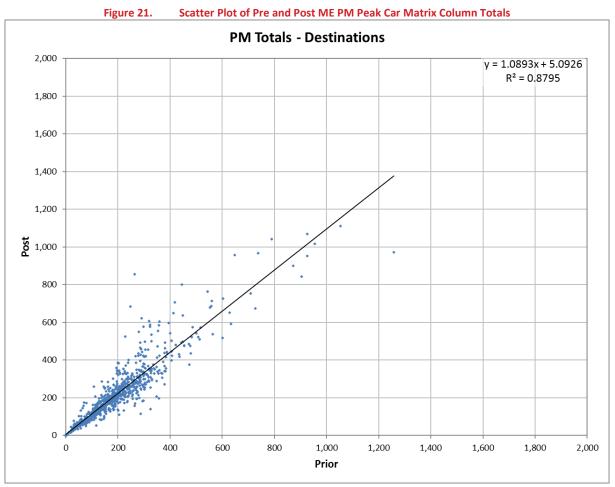
Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 56/77











Trip Length Distributions

- 8.3.4 Figure 22-29 show trip length frequency distributions for all vehicles, showing the number of trips lying within each distance band pre and post matrix estimation, by period. Table 28 shows the mean trip length for the prior and post estimation matrices.
- 8.3.5 The shape of the curves in Figure 22, Figure 23, and Figure 24 are in line with expectations for a model representing both urban and interurban trips, with short trips dominating the distribution, but a significant number of longer distance trips forming the tail of the distribution. The results show that the matrix estimation process has not significantly distorted the distribution in any of the AM, IP or PM periods.

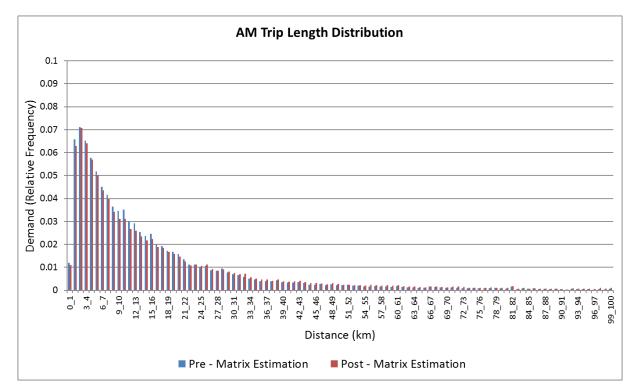
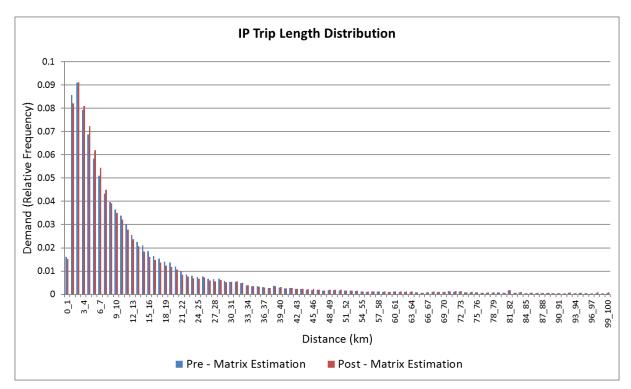
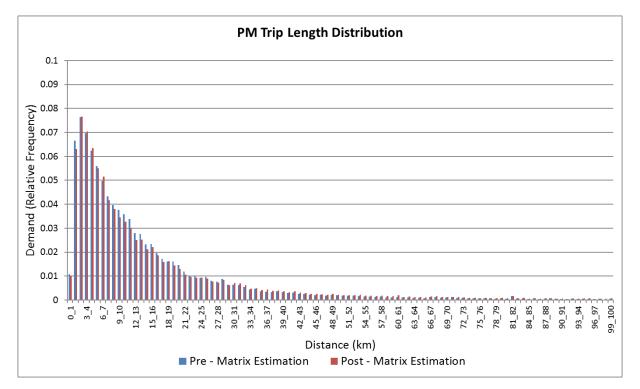



Figure 23. Trip Frequency Distribution Pre/Post ME Inter-Peak Hour, All Vehicles – Relative frequency



Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 63/77

8.3.6 The mean trip length (for within the Core area) changes between 10% and 16%, with average trip length increasing in all cases.

Table 28. Mean Trip Length (km)					
MODEL PERIOD	PRIOR	POST	%		
AM Peak Hour	21.39	24.70	15.5%		
IP Hour	19.12	20.95	9.6%		
PM Peak Hour	20.66	23.08	11.7%		

Table	28. M	ean Tr	ip Len	gth ((km)	í
Table	20.14	can n	ip Len	Sui	(1511)	1

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 64/77

8.4 Post - Trip Matrix Validation

8.4.1 Chapter 3 described the WebTAG validation standards. The screenline flow criteria and acceptability guidelines are reproduced in Table 29.

Table 29.	Screenline	Flow Validatio	on Criterion and	Acceptability	v Guideline

CRITERIA	ACCEPTABILITY GUIDELINE
Differences between modelled flows and counts should be less than 5% of the counts	All or nearly all screenlines

8.4.2 Table 30 and Table 31 show the results of the cordon and screenline validation analysis for each of the modelled periods, for vehicles and cars respectively. **Appendix B** shows the validation performance of each cordon and screenline.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 65/77

SYSTIA

Table 30. Cordon and Screenline Flow Validation: Vehicles

Measure	Criteria	Acceptability Guideline	AM Peak	Inter Peak	PM Peak
	Differences between modelled flows and counts should be less than 5% of the counts	All or nearly all screenlines (WebTAG)	83%	89%	80%
Matrix Validation	Differences between modelled flows and counts should be within GEH=4 of the counts	N/A	82%	94%	85%
	Differences between modelled flows and counts should be less than 10% of the counts	N/A	97%	100%	98%

Table 31. Cordon and Screenline Flow Validation: Cars

Measure	Criteria	Acceptability Guideline	AM Peak	Inter Peak	PM Peak
Matrix Validation	Differences between modelled flows and counts should be less than 5% of the counts	All or nearly all screenlines (WebTAG)	77%	92%	77%
	Differences between modelled flows and counts should be within GEH=4 of the counts	N/A	82%	94%	88%
	Differences between modelled flows and counts should be less than 10% of the counts	N/A	91%	97%	98%

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 66/77

9. NETWORK CALIBRATION AND VALIDATION

9.1 Introduction

- 9.1.1 This chapter describes:
 - link flow validation;
 - journey time validation; and
 - convergence and stability.

9.2 Link Flow Validation

9.2.1 Chapter 3 described the WebTAG validation standards. Table 32 reproduces the validation criteria and acceptability guidelines for link flows.

Table 32. Link Flow Validation Criteria and Acceptability Guidelines

CRITERIA	ACCEPTABILITY GUIDELINE
Individual flows within 15% of counts for flows from 700 to 2,700 veh/h	> 85% of cases
Individual flows within 100 veh/h of counts for flows less than 700 veh/h	> 85% of cases
Individual flows within 400 veh/h of counts for flows more than 2,700 veh/h	> 85% of cases
GEH < 5 for individual flows	> 85% of cases

9.2.2 0 and Table 34 show the results of the network validation analysis for each of the modelled periods, for vehicles and cars respectively. **Appendix B** shows the validation performance of each cordon and screenline.

SYSTIA

Table 33. Link Flow Validation: Vehicles

Measure	Criteria	Acceptability Guideline	AM Peak	Inter Peak	PM Peak
Link Flow Validation	Individual flows within 15% of counts for flows from 700 to 2700 veh/h			74%	66%
	Individual flows within 100 veh/h of counts for flows less than 700 veh/h	>85% of cases (WebTAG)	66%		
	Individual flows within 400 veh/h of counts for flows more than 2700 veh/h				
	GEH < 5 for individual flows	> 85% of cases (WebTAG)	58%	65%	58%
	GEH < 10 for individual flows	N/A	85%	87%	81%

Table 34. Link Flow Validation: Cars

Measure	Criteria	Acceptability Guideline	AM Peak	Inter Peak	PM Peak
Link Flow Validation	Individual flows within 15% of counts for flows from 700 to 2700 veh/h			77%	
	Individual flows within 100 veh/h of counts for flows less than 700 veh/h	>85% of cases (WebTAG)	69%		67%
	Individual flows within 400 veh/h of counts for flows more than 2700 veh/h				
	GEH < 5 for individual flows	> 85% of cases (WebTAG)	59%	67%	60%
	GEH < 10 for individual flows	N/A	86%	87%	83%

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 68/77

9.3 Journey Time Validation

9.3.1 The acceptability guideline for journey times are reproduced in Table 35.

Table 35. Journey Time Validation Criteria and Acceptability Guideline

CRITERIA	ACCEPTABILITY GUIDELINE
Modelled times along routes should be within 15% of surveyed times (or 1 minute, if higher)	> 85% of routes

9.3.2 Table 36 below shows the number of journey time routes meeting the criteria. AppendixC shows the validation performance of each route.

Measure	Criteria	Acceptability Guideline	AM Peak	Inter Peak	PM Peak
Journey Times Validation	Modelled times along routes should be within 15% of surveyed times (or 1 minute, if higher)	>85% of routes (WebTAG)	82%	82%	64%
	Modelled times along routes should be within 20% of surveyed times (or 1 minute, if higher)	N/A	90%	88%	70%

Table 36. Journey Time Validation

9.3.3 **Appendix D** shows the journey time validation time versus distance profiles. Detailed investigation of journey time validation results by route showed that the slope of the observed and modelled journey times are generally similar and that the model representation of observed conditions on the surveyed network is appropriate despite falling short of the criteria for the full extent of the journey on some routes.

9.4 Convergence and Stability

9.4.1 The acceptability guideline for journey times are reproduced in Table 37.

Table 37. Summary of Convergence Measures and Base Model Acceptable Values

MEASURE OF CONVERGENCE	BASE MODEL ACCEPTABLE VALUES		
Delta and %GAP	Less than 0.1% or at least stable with convergence fully documented and all other criteria met		
Percentage of links with flow change (P)<1%	Four consecutive iterations greater than 98%		
Percentage of links with cost change (P2)<1%	Four consecutive iterations greater than 98%		

9.4.2 There are several important parameters in SATURN that are used to ensure convergence is acceptable. These are:

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page

KONSTP "KONtrol of SToPping Criteria"

This defines the type of the conditions required for the assignment to end. The stopping criteria for assignment - simulation loops are based on either: ISTOP (KONSTP = 0); %GAP value (1); CPU time (2); RSTOP and/or CPU (3); %GAP and/or CPU (4); %GAP and RSTOP (5); %GAP or (6) %ISTOP. The assignment will also end when the number of assignment loops reaches MASL (see below).

SATURN Default: 5 WebTAG: N/A Solent Model: 5

Therefore unless MASL is reached the assignment will only stop if %GAP and RSTOP criteria are reached.

MASL

This the maximum number of assignment/simulation loops. WebTAG: N/A SATURN Default: 15 Solent Model: 150

NISTOP

The number of successive loops which must satisfy the RSTOP criteria in the test for convergence of the assignment/simulation loops.

WebTAG: 4	SATURN Default: 4	Solent Model: 4
STPGAP		
WebTAG: 0.1%	SATURN Default: 1.0%	Solent Model: 0.05%
PCNEAR		
Percentage change in flows j	udged to be "near" in successive as	signments.
WebTAG: 1.0%	SATURN Default: 1.0%	Solent Model: 1.0%
RSTOP		

Used in the test for convergence of the assignment/simulation loops. The loops stop automatically if RSTOP % of the link flows change by less than "PCNEAR" percent (default 5%) from one assignment to the next.

WebTAG: 98% SATURN Default: 97.5%

Solent Model: 98%

9.4.3 Table 38 shows the performance of the model for the criteria. The stopping criteria set for the model are also shown; these exceed the guidelines and setting these ensured that the model iterations continued until all the set criteria were satisfactorily met.

MEASURE OF CONVERGENCE	SATURN PARAMETER	BASE MODEL ACCEPTABLE VALUES	STOPPING CRITERIA	AM PEAK	INTER- PEAK	PM PEAK
%GAP	NISTOP STPGAP	Less than 0.1% or at least stable with convergence fully documented and all other criteria met	< 0.05% (for base model)	0.023 0.038 0.050 0.025	0.016 0.017 0.012 0.011	0.031 0.046 0.035 0.050
Percentage of links with flow change (P)<1% (for final four iterations)	NISTOP PCNEAR RSTOP	Four consecutive iterations greater than 98%	Four consecutive iterations greater than 98%	99.5 99.6 98.8 98.8	98.1 98.5 98.7 98.8	98.6 99.1 98.6 99

Table 38. Convergence and Stability Model Results

Solent Transport Model			
Road Traffic Model	102891		
Model Development and Validation Report	12/12/2017	Page	70/77

MEASURE OF CONVERGENCE	SATURN PARAMETER	BASE MODEL ACCEPTABLE VALUES	STOPPING CRITERIA	AM PEAK	INTER- PEAK	PM PEAK
Percentage of links with cost change (P2)<1% (for final four iterations)	NONE	Four consecutive iterations greater than 98%	Four consecutive iterations greater than 98%	99.6 99.5 99.4 99.4	99.9 99.9 99.9 99.9 99.9	99.4 99.6 99.4 99.5

10. SUMMARY OF MODEL DEVELOPMENT AND FITNESS FOR PURPOSE

10.1 Summary of Model Development

General

10.1.1 The Transport for South Hampshire (Solent) Sub-Regional Transport Model (SRTM) is an evidence based Land-Use and Transport Interaction model. It contains a suite of transport models and an associated Local Economic Impact Model (LEIM). The suite of transport models comprises the Main Demand Model (MDM), the Gateway Demand Model (GDM), Road Traffic Model (RTM) and Public Transport Model (PTM).

Objective

- 10.1.2 The SRTM will be used to support the assessment of a wide-ranging set of interventions across the Solent sub-region, and is specifically required to be capable of:
 - 0 forecasting changes in travel demand, road traffic and public transport patronage over time as a result changing economic conditions, land-use policies and development, and transport improvement and interventions;
 - 0 testing the impacts of land-use and transport policies and strategies within a relatively short model run time; and
 - 0 testing the impacts of individual transport interventions in the increased detail necessary for supporting submissions for inclusion in funding programmes within practical (but probably longer) run times.
- 10.1.3 The RTM has been developed to represent the base year demand, route choices and costs on the highway network. In terms of future scenarios, it will be used to represent the network impacts of different policy and infrastructure interventions.

Geographic Scope

- 10.1.4 The modelled area of the RTM is sub-divided into four regions which differ by zone aggregation and modelling detail, as follows:
 - 0 Core Fully Modelled Area (detailed zoning);
 - 0 Marginal Fully Modelled Area (detailed zoning);
 - 0 Buffer Area (zones based on wards); and
 - 0 External (zones based on districts).
- 10.1.5 The core fully modelled area is defined by the Transport for South Hampshire boundary. This is the area which will have the finest level of detail in the zoning and, for the RTM, a simulation network representation.

Centroid Connectors

10.1.6 The placing of centroid connectors has been carefully designed in order to ensure the loading of traffic onto the network is realistic. The number of centroids per zone has been

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 7

minimised to limit excessive reassignment effects through model calibration and forecasting.

10.1.7 The location of centroid connectors have been defined based on area photograph and professional judgment to identify patterns of traffic movement and feeding points of local traffic on the main model roads. This work was supported by client recommendations based on local knowledge.

Time Periods

10.1.8 The RTM is based on demand levels for one-hour periods, based on the distributions of the broader period. For the inter peak this is an average weekday hour between 10.00 and 16.00, whilst the AM (07.00-10.00) and PM (16.00-19.00) peak periods are represented by the peak hours. AM and PM peak matrices have been obtained from the period matrices, by applying peak hour factors which were calculated from an analysis of count data.

User Classes

- 10.1.9 The user classes for the RTM are based on the MDM trip purpose segments. The trip purpose segments are aggregated based on differentials in users' value of time (VoT) and differentials in vehicle operating cost (VoC). The RTM has the following assignment user classes:
 - Car Employer's Business;
 - Car Other;
 - LGVs; and
 - OGVs.
- 10.1.10 Travellers in the employer's business class have a higher value of time than in the other classes, which needs to be retained in the assignment model.
- 10.1.11 The 'Other' user class includes all car trips with purposes of commuting, shopping, education, leisure, personal business. These have been combined because the VoT:VoC relationship is considered to be sufficiently similar to not warrant the additional run times introduced by separate assignment segments.

Trip Matrices

- 10.1.12 The key steps in developing the base year matrices were:
 - Development of the origin destination demand; and
 - Development of the one hour RTM assignment matrices.
- 10.1.13 The origin/destination demand matrices are defined at the period level: AM (0700-1000), IP (1000-1600), PM (1600-1900), and Off Peak (1900-0700). They include four homebased and two non home-based personal trip purposes matrices.

- 10.1.14 The one-hour RTM assignment matrices were obtained from the corresponding origin/ destination demand matrices by:
 - 0 applying peak-hour or average hour factors;
 - 0 applying trip purpose-specific vehicle occupancy factors to convert the person matrices to vehicle matrices;
 - 0 applying passenger car units (PCUs) to the LGV and HGV demand matrices; and
 - 0 aggregating the demand matrices into the assignment purposes.
- 10.1.15 Assignment and validation of the one hour RTM matrices showed that matrix estimation was necessary to refine the prior matrices, particularly for trips crossing the calibration screenlines and not sampled using the OD surveys.

Assignment Methodology

10.1.16 The deterministic user equilibrium method implemented in the SATURN software is used. This assumes that users have perfect knowledge of the time taken to pass through the network from their origin to destination.

Calibration and Validation

- 10.1.17 Data was collected to calibrate and validate the RTM. The data is defined as either demand or supply. Demand data is any information used to calibrate and validate the demand matrices, and supply data is used for building the highway network.
- 10.1.18 Demand data collected for the purpose of calibrating and validation the RTM included:
 - 0 Roadside Interview Surveys (RSI);
 - 0 Screenline manual and automatic traffic counts; and
 - 0 Automatic number plate recognition (ANPR) survey.
- 10.1.19 Surveys were organised to collect the following supply data for the RTM:
 - 0 Journey time surveys; and
 - 0 Junction saturation flow surveys.
- 10.1.20 Further supply data included TrafficMaster data, signal data and speed limit information. In addition other existing models such as the PWCS were used for network validation.

10.2 **Summary of Standards Achieved**

10.2.1 Table 39 presents an overall view of the performance of the model against WebTAG criteria. The screenline validation in particular shows good results for the overall Road Traffic Model. The link flow and journey time validation do not meet the WebTAG criteria, however these overall criteria mask a reasonable performance, which is close to the meeting the acceptability guidelines.

SYSTIA

Table 39. Summary of Validation Statistics

Measure	Criteria	Acceptability Guideline	AM Peak	Inter Peak	PM Peak
	Differences between modelled flows and counts should be less than 5% of the counts	All or nearly all screenlines (WebTAG)	83%	89%	80%
Matrix Validation	Differences between modelled flows and counts should be within GEH=4 of the counts	N/A	82%	94%	85%
	Differences between modelled flows and counts should be less than 10% of the counts	N/A	97%	100%	98%
	Individual flows within 15% of counts for flows from 700 to 2700 veh/h				
	Individual flows within 100 veh/h of counts for flows less than 700 veh/h	>85% of cases (WebTAG)	66%	74%	66%
Link Flow Validation	Individual flows within 400 veh/h of counts for flows more than 2700 veh/h				
	GEH < 5 for individual flows	> 85% of cases (WebTAG)	58%	65%	58%
	GEH < 10 for individual flows	N/A	85%	87%	81%
Journey Times	Modelled times along routes should be within 15% of surveyed times (or 1 minute, if higher)	>85% of routes (WebTAG)	82%	82%	64%
Validation	Modelled times along routes should be within 20% of surveyed times (or 1 minute, if higher)	N/A	90%	88%	70%

- 10.2.2 Table 39 demonstrates that the model performance is in general good, and that the screenline validation performs particularly well. This is critical, as of the three validation measures the matrix validation screenlines are of particular importance, as discussed below:
 - 0 Matrix Validation - Highly important, as it ensures the demand in the model is correct for assessing interventions and future changes;
 - Link Flow Validation Less significant at an individual link level, because routing 0 can be volatile and vary from day to day; and
 - 0 Journey Times Validation - Also less crucial because journey times can vary, and it is more important that changes can be represented in the model both within mode and relatively between modes.

Solent Transport Model		
Road Traffic Model	102891	
Model Development and Validation Report	12/12/2017	Page 75/7

10.2.3 It should be noted also that the Solent Steering Group view the matrix validation to be of more importance than the link flow validation, as the expected interventions to be tested generally cover mode shift changes rather than major highway improvements affecting traffic routing.

10.3 Conclusion

- 10.3.1 The SRTM model system covers a wide geographic area and contains a significant number of strategic motorways, primary routes and complex urban road networks. An unusual feature of the model is that it includes two main conurbations, Southampton and Portsmouth, significant district centres such as Fareham and Gosport, a number of peninsulas, and a third geographically distinct centre on the Isle of Wight. More typically traffic models are developed for either single corridors, free-standing cities or conurbations. The strategic validation of the Road Traffic Model needs to be considered in this context, i.e. a model of multiple, often parallel, corridors and multiple centres that generate urban and inter-urban trips combined with strategic road access routes using the Motorway and trunk road network.
- 10.3.2 The model has been constructed according to WebTAG recommendations, and validated against DMRB guidelines. The calibration process did not reveal any significant problems or shortcomings in the base year model. The quality of validation of the model is in general good, with the screenline validation performing particularly well. This is critical, as it ensures the demand in the model is correct for assessing multi-modal interventions and future changes.
- 10.3.3 The journey time validation and the patterns of junction delay appear consistent and plausible, although the link flow and journey time validation do not meet the WebTAG criteria. However, these recommended criteria mask a good model performance that is close to meeting the acceptability guidelines.
- 10.3.4 It is often considered that the WebTAG thresholds of acceptability are more suited to smaller, less complex models, and as such it may be argued that a certain level of flexibility is acceptable given the scale and complexity of the SRTM.
- 10.3.5 The calibration and validation suggest that the model is fit for the purpose of representing the highway traffic patterns in the base year, as part of the SRTM.
- 10.3.6 The model encompasses a large geographic area at different levels of detail and is expected to be used to consider a range of strategic and specific interventions, e.g. representing the main highway movements, the impact of major highway and public transport interventions on those movements, and providing controlled and consistent inputs to local or more detailed models.
- 10.3.7 It is acknowledged that whilst fit for general purpose, depending on the nature and scope of the intervention being tested, additional local validation checks may be beneficial for model application for specific interventions at a local level.

SYSTRA provides advice on transport, to central, regional and local government, agencies, developers, operators and financiers.

A diverse group of results-oriented people, we are part of a strong team of professionals worldwide. Through client business planning, customer research and strategy development we create solutions that work for real people in the real world.

For more information visit www.systra.co.uk

Birmingham – Newhall Street 5th Floor, Lancaster House, Newhall St, Birmingham, B3 1NQ T: +44 (0)121 233 7680 F: +44 (0)121 233 7681

Birmingham – Innovation Court Innovation Court, 121 Edmund Street, Birmingham B3 2HJ T: +44 (0)121 230 6010

Bristol 10 Victoria Street, Bristol, BS1 6BN T: +44 (0)117 922 9040

Dublin 2nd Floor, Riverview House, 21-23 City Quay Dublin 2,Ireland T: +353 (0) 1 905 3961

Edinburgh – Thistle Street Prospect House, 5 Thistle Street, Edinburgh EH2 1DF United Kingdom T: +44 (0)131 220 6966

Edinburgh – Manor Place 37 Manor Place, Edinburgh, EH3 7EB Telephone +44 (0)131 225 7900 Fax: +44 (0)131 225 9229

Glasgow – St Vincent St Seventh Floor, 124 St Vincent Street Glasgow G2 5HF United Kingdom T: +44 (0)141 225 4400

Glasgow – West George St 250 West George Street, Glasgow, G2 4QY T: +44 (0)141 221 4030 F: +44 (0)800 066 4367

Leeds 100 Wellington Street, Leeds, LS1 1BA T: +44 (0)113 397 9740 F: +44 (0)113 397 9741

Liverpool Cotton Exchange, Bixteth Street, Liverpool, L3 9LQ T: +44 (0)151 230 1930

London 3rd Floor, 5 Old Bailey, London EC4M 7BA United Kingdom T: +44 (0)203 714 4400

Manchester – 16th Floor, City Tower 16th Floor, City Tower, Piccadilly Plaza Manchester M1 4BT United Kingdom T: +44 (0)161 831 5600 Newcastle PO Box 438, Newcastle upon Tyne, NE3 9BT United Kingdom

T: +44 (0)191 2136157 Perth

13 Rose Terrace, Perth PH1 5HA T: +44 (0)1738 621 377 F: +44 (0)1738 632 887

Reading

Soane Point, 6-8 Market Place, Reading, Berkshire, RG1 2EG T: +44 (0)118 334 5510

Woking

Dukes Court, Duke Street Woking, Surrey GU21 5BH United Kingdom T: +44 (0)1483 728051 F: +44 (0)1483 755207

Other locations:

France: Bordeaux, Lille, Lyon, Marseille, Paris

Northern Europe: Astana, Copenhagen, Kiev, London, Moscow, Riga, Wroclaw

Southern Europe & Mediterranean: Algiers, Baku, Bucharest, Madrid, Rabat, Rome, Sofia, Tunis

Middle East: Cairo, Dubai, Riyadh

Asia Pacific:

Bangkok, Beijing, Brisbane, Delhi, Hanoi, Hong Kong, Manila, Seoul, Shanghai, Singapore, Shenzhen, Taipei

Africa: Abidjan, Douala, Johannesburg, Kinshasa, Libreville, Nairobi

Latin America: Lima, Mexico, Rio de Janeiro, Santiago, São Paulo

North America: Little Falls, Los Angeles, Montreal, New-York, Philadelphia, Washington

APPENDIX A С

11 Totton Enclosure

12 Eastleigh Enclosure

12 Eastleigh Enclosure

36 Solent RSI Cordon

36 Solent RSI Cordon

Overall

13 Southampton Enclosure

13 Southampton Enclosure

Inbound

Outbound

Inbound

Inbound

Outbound

Northbound

Southbound

19

11

11

14

14

3

3

286

10.230

5,307

6,033

11,508

15,397

184,363

218

200

9.791

4,992

5,699

11,453

15,792

178,989

240

224

-439

-315

-333

-55

395

22

24

-5,374

-4.3%

-5.9%

-5.5%

-0.5%

2.6%

10.2%

12.2%

-2.9%

4.4 Ν

4.4

4.4 N

0.5 Y

3.2 Y

1.5 Y

1.7

Ν

Y

50%

Y

Ν

Ν

Y

Y

Y

Ν

53%

Y

γ

Y

Y

Y

Ν

N

73%

Y

Y

Y

Y

Y

Y

83%

APPENDIX A												
CORDONS AND SCREENLINES			AM									
			Vehicles									
			Cordon and									
Cordon/ Screenline	Dir	Sites	Observed	Model	Diff	% Diff	GEH	GEH<=	WebTAG v			_
	Ļ							4	5%	7.5%	10%	_
RSI Cordons and Screenlines	<u> </u>										1	_
1 Fareham Enclosure	Outbound	16	10,764	9,055	-1,709	-15.9%	17.2		N	N	N	┢
1 Fareham Enclosure	Inbound	16	10,957	9,552	-1,405	-12.8%	13.9		N	N	N	Ļ
2 Havant Enclosure	Outbound	10	5,055	4,735	-320	-6.3%	4.6	N	N	Y	Y	
2 Havant Enclosure	Inbound	10	5,085	4,860	-225	-4.4%	3.2	Y	Y	Y	Y	
3 Hayling Island Enclosure	Outbound	1	1,508	1,575	66	4.4%	1.7	Y	Y	Y	Y	
3 Hayling Island Enclosure	Inbound	1	876	975	99	11.3%	3.3	Y	Y	N	N	
4 Hedge End Enclosure	Outbound	8	5,382	4,997	-384	-7.1%	5.3	N	N	Y	Y	Г
4 Hedge End Enclosure	Inbound	8	5,189	4,856	-332	-6.4%	4.7	N	N	Y	Y	Г
5 Waterlooville Enclosure	Outbound	18	11,306	10,585	-721	-6.4%	6.9	N	N	Y	Y	Г
5 Waterlooville Enclosure	Inbound	18	9,514	9,497	-16	-0.2%	0.2	Y	Y	Y	Y	Г
71 Portsmouth South Enclosure	Outbound	6	4,559	4,691	132	2.9%	1.9	Y	Y	Y	Y	Г
71 Portsmouth South Enclosure	Inbound	6	4,649	4,528	-121	-2.6%	1.8	Y	Y	Y	Y	Г
72 Portsmouth North Enclosure	Outbound	7	4,334	4,029	-305	-7.0%	4.7	N	N	Y	Y	Г
72 Portsmouth North Enclosure	Inbound	7	4,478	4,924	445	9.9%	6.5	N	N	N	Y	Г
8 Southampton City Enclosure	Outbound	12	4,927	4,581	-346	-7.0%	5.0	N	N	Y	Y	Г
8 Southampton City Enclosure	Inbound	12	7,743	7,841	99	1.3%	1.1	Y	Y	Y	Y	Г
91 Bitterne West Screenline	Eastbound	5	2,978	3,457	479	16.1%	8.4	N	N	N	N	Г
91 Bitterne West Screenline	Westbound	5	5,625	6,164	538	9.6%	7.0	N	N	N	Y	Γ
92 Bitterne East Screenline	Eastbound	4	3,916	3,858	-58	-1.5%	0.9	Y	Y	Y	Y	Γ
92 Bitterne East Screenline	Westbound	4	3,353	3,215	-138	-4.1%	2.4	Y	Y	Y	Y	Γ
10 Locks Heath North Screenline	Outbound	9	6,695	6,999	304	4.5%	3.7	Y	Y	Y	Y	Т
10 Locks Heath North Screenline	Inbound	9	6,839	6,540	-298	-4.4%	3.6	Y	Y	Y	Y	Γ
11 Totton Enclosure	Outbound	19	9,737	9,280	-457	-4.7%	4.7	N	Y	Y	Y	Г

15%

Ν Y

Y

Y

Y Y

Y Y

Υ

Y

Y

Y

Y

Y

Y

Y

Ν

Y

Y

Y

Y

Y

Υ

Y

Y

Y

Y

Y

Y

Y

93%

20%

γ

Y

Y Y

Y

Y Y

Υ

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

100%

APPENDIX A CORDONS AND SCREENLINES

APPENDIX A													
CORDONS AND SCREENLINES			IP										
			Vehicles										
			Cordon and										
Cordon/ Screenline	Dir	Sites	Observed	Model	Diff	% Diff	GEH	GEH<=	WebTAG v		100/	450/	2001
RSI Cordons and Screenlines								4	5%	7.5%	10%	15%	20%
1 Fareham Enclosure	Outbound	16	7,571	6,449	-1,121	-14.8%	13.4	N	N	N	N	Y	Y
1 Fareham Enclosure	Inbound	16	7,371	6,523	-1,121	-14.8%	15.4	N	N	N	N	N N	Y
2 Havant Enclosure	Outbound	10	3,964	3,824	-1,521 -141	-10.8%	2.3	Y	Y	Y	Y	Y	Y Y
2 Havant Enclosure	Inbound	10	4,053	3,957	-141	-3.3%	1.5	Y	Y	Y	Y Y	Y	Y
	Outbound	10	4,053	1,012	-95	-2.4%	3.2	Y Y	Y	N	N	Y Y	Y
3 Hayling Island Enclosure 3 Hayling Island Enclosure	Inbound	1	912	1,012	100	11.0%	4.5	N	Y	N	N	Y	Y
4 Hedge End Enclosure	Outbound	8	3,815	3,679	-136	-3.6%	4.3	Y	Y	Y	Y	Y	Y
4 Hedge End Enclosure	Inbound	8	4,328	4,151	-130	-3.0%	2.2	Y	Y	Y	Y	Y	Y
5 Waterlooville Enclosure	Outbound	18	7,469	7,261	-177	-4.1%	2.7	Y	Y	Y	Y	Y	Y
5 Waterlooville Enclosure	Inbound	18	7,409	7,201	-208	-2.8%	0.6	Y	Y	Y	Y	Y	Y
71 Portsmouth South Enclosure	Outbound	6	3,571	3,750	179	5.0%	3.0	Y	Y	Y	Y	Y	Y
71 Portsmouth South Enclosure	Inbound	6	3,833	3,788	-45	-1.2%	0.7	Y	Y	Y	Y	Y	Y
72 Portsmouth North Enclosure	Outbound	7	3,445	3,788	-43	-1.2%	3.4	Y	N	Y	Y	Y	Y
72 Portsmouth North Enclosure	Inbound	7	3,360	3,391	30	0.9%	0.5	Y	Y	Y	Y	Y	Y
8 Southampton City Enclosure	Outbound	12	4,983	4,994	11	0.2%	0.2	Y	Y	Y	Y Y	Y	Y
8 Southampton City Enclosure	Inbound	12	4,883	5,058	175	3.6%	2.5	Y	Y	v v	v v	Y Y	Y
91 Bitterne West Screenline	Eastbound	5	3,207	3,477	270	8.4%	4.7	N	N	N	Y Y	Y	Y
91 Bitterne West Screenline	Westbound	5	2,912	2,966	54	1.9%	1.0	Y	Y	Y	Y Y	Y	Y
92 Bitterne East Screenline	Eastbound	4	2,830	2,882	54	1.8%	1.0	Y	Y	Y	Y Y	Y	Y
92 Bitterne East Screenline	Westbound	4	2,518	2,594	76	3.0%	1.5	Y	Y	Y	Y Y	Y	Y
10 Locks Heath North Screenline	Outbound	9	4,635	4,324	-311	-6.7%	4.6	N	N	Y	Y Y	Y	Y
10 Locks Heath North Screenline	Inbound	9	4,698	4,423	-276	-5.9%	4.1	N	N	Y	Y Y	Y Y	Y Y
11 Totton Enclosure	Outbound	19	6,430	6,243	-187	-2.9%	2.3	Y	Y	Y	Y Y	Y	Y
11 Totton Enclosure	Inbound	19	6,824	6,709	-115	-1.7%	1.4	Y	Y	Y	Y Y	Y	Y
12 Eastleigh Enclosure	Outbound	11	3,776	3,660	-116	-3.1%	1.9	Y	Y	Y	Y Y	Y	Y
12 Eastleigh Enclosure	Inbound	11	3,636	3,456	-180	-4.9%	3.0	Y	Y	Y	Y Y	Y	Y
13 Southampton Enclosure	Outbound	14	9,677	9,271	-407	-4.2%	4.2	N	Y	Y	Y	Y	Y
13 Southampton Enclosure	Inbound	14	9,305	9,346	407	0.4%	0.4	Y	Y	Y	Y Y	Y	Y
36 Solent RSI Cordon	Northbound	3	161	169		5.1%	0.4	Y	Y	Y	Y Y	Y	Y
36 Solent RSI Cordon	Southbound	3	159	165	5	3.4%	0.4	Y	Y	Y	Y	Y	Y
Overall	Journoodilu	286	133,375	129,429	-3,946	-3.0%	5.4	77%	80%	83%	87%	97%	100%

APPENDIX A CORDONS AND SCREENLINES

			Vehicles Cordon and	Screenlines	Validation								
Cordon/ Screenline	Dir	Sites	Observed	Model	Diff	% Diff	GEH	GEH<=	WebTAG v	vithin			
						/		4	5%	7.5%	10%	15%	20%
RSI Cordons and Screenlines													
1 Fareham Enclosure	Outbound	16	10,445	9,009	-1,436	-13.7%	14.6	Ν	N	N	N	Y	Y
1 Fareham Enclosure	Inbound	16	10,189	8,979	-1,210	-11.9%	12.4	N	N	N	N	Y	Y
2 Havant Enclosure	Outbound	10	5,228	4,981	-247	-4.7%	3.5	Y	Y	Y	Y	Y	Y
2 Havant Enclosure	Inbound	10	5,539	5,316	-223	-4.0%	3.0	Y	Y	Y	Y	Y	Y
3 Hayling Island Enclosure	Outbound	1	856	975	119	13.9%	3.9	Y	Y	N	N	Y	Y
3 Hayling Island Enclosure	Inbound	1	1,442	1,499	57	4.0%	1.5	Y	Y	Y	Y	Y	Y
4 Hedge End Enclosure	Outbound	8	4,735	4,583	-152	-3.2%	2.2	Y	Y	Y	Y	Y	Y
4 Hedge End Enclosure	Inbound	8	6,029	5,594	-435	-7.2%	5.7	N	N	Y	Y	Y	Y
5 Waterlooville Enclosure	Outbound	18	10,142	10,137	-4	0.0%	0.0	Y	Y	Y	Y	Y	Y
5 Waterlooville Enclosure	Inbound	18	11,576	11,089	-487	-4.2%	4.6	N	Y	Y	Y	Y	Y
71 Portsmouth South Enclosure	Outbound	6	4,326	4,655	329	7.6%	4.9	N	N	N	Y	Y	Y
71 Portsmouth South Enclosure	Inbound	6	5,376	5,133	-244	-4.5%	3.4	Y	Y	Y	Y	Y	Y
72 Portsmouth North Enclosure	Outbound	7	4,560	4,554	-7	-0.1%	0.1	Y	Y	Y	Y	Y	Y
72 Portsmouth North Enclosure	Inbound	7	4,223	4,296	73	1.7%	1.1	Y	Y	Y	Y	Y	Y
8 Southampton City Enclosure	Outbound	12	7,347	7,371	24	0.3%	0.3	Y	Y	Y	Y	Y	Y
8 Southampton City Enclosure	Inbound	12	5,548	5,778	231	4.2%	3.1	Y	Y	Y	Y	Y	Y
91 Bitterne West Screenline	Eastbound	5	5,545	6,106	561	10.1%	7.4	N	N	N	Y	Y	Y
91 Bitterne West Screenline	Westbound	5	2,908	3,202	293	10.1%	5.3	N	N	N	Y	Y	Y
92 Bitterne East Screenline	Eastbound	4	4,006	3,931	-75	-1.9%	1.2	Y	Y	Y	Y	Y	Y
92 Bitterne East Screenline	Westbound	4	2,739	2,990	252	9.2%	4.7	N	N	N	Y	Y	Y
10 Locks Heath North Screenline	Outbound	9	6,806	6,608	-198	-2.9%	2.4	Y	Y	Y	Y	Y	Y
10 Locks Heath North Screenline	Inbound	9	6,898	6,530	-369	-5.3%	4.5	N	Y	Y	Y	Y	Y
11 Totton Enclosure	Outbound	19	9,422	9,483	61	0.7%	0.6	Y	Y	Y	Y	Y	Y
11 Totton Enclosure	Inbound	19	10,338	9,934	-405	-3.9%	4.0	N	Y	Y	Y	Y	Y
12 Eastleigh Enclosure	Outbound	11	5,681	5,569	-112	-2.0%	1.5	Y	Y	Y	Y	Y	Y
12 Eastleigh Enclosure	Inbound	11	5,329	5,169	-160	-3.0%	2.2	Y	Y	Y	Y	Y	Y
13 Southampton Enclosure	Outbound	14	14,550	14,274	-276	-1.9%	2.3	Y	Y	Y	Y	Y	Y
13 Southampton Enclosure	Inbound	14	12,179	12,022	-157	-1.3%	1.4	Y	Y	Y	Y	Y	Y
36 Solent RSI Cordon	Northbound	3	201	209	9	4.3%	0.6	Y	Y	Y	Y	Y	Y
36 Solent RSI Cordon	Southbound	3	168	192	23	13.9%	1.7	Y	N	N	N	Y	Y
Overall		286	184,329	180,168	-4,161	-2.3%		67%	73%	73%	87%	100%	100%

APPENDIX B CORDONS AND SCREENLINES

AM

			Vehicles	C	Malia. •*							Dates and			
Cordon/ Screenline	Dir	Sites	Cordon and Observed	Screenlines Model	Validation Diff	% Diff	GEH	GEH<=	WebTAG v	vithin		Link Valida WebTAG v			
								4	5%	7.5%	10%	Abs or %	GEH=5	GEH=7.5	GEH=10
RSI Cordons and Screenlines			·								1				
1 Fareham Enclosure	Outbound	16	10,764	11,115	351	3.3%	3.4	Y	Y	Y	Y	88%	56%	81%	94%
1 Fareham Enclosure	Inbound	16	10,957	10,612	-345	-3.1%	3.3	Y	Y	Y	Y	88%	69%	88%	88%
2 Havant Enclosure	Outbound	10	5,055	4,900	-155	-3.1%	2.2	Y	Y	Y	Y	40%	40%	70%	70%
2 Havant Enclosure	Inbound	10	5,085	5,266	180	3.5%	2.5	Y	Y	Y	Y	30%	30%	40%	60%
3 Hayling Island Enclosure	Outbound	1	1,508	1,613	104	6.9%	2.6	Y	Y	Y Y	Y Y	100%	100%	100%	100%
3 Hayling Island Enclosure	Inbound	1	876	839	-37	-4.2%	1.3					100%	100%	100%	100%
4 Hedge End Enclosure	Outbound	8	5,382	5,949	568	10.5%	7.5	N	N	N Y	N Y	25%	50%	88%	88%
4 Hedge End Enclosure	Inbound	8	5,189	5,133	-56 -419	-1.1%	0.8	Y	Y Y	Y	Y Y	63% 39%	63%	75%	75%
5 Waterlooville Enclosure	Outbound	18 18	11,306 9,514	10,887 9,100	-419	-3.7%	4.0 4.3	N	Y	Y	Y	67%	39% 61%	72% 72%	89% 78%
5 Waterlooville Enclosure	Inbound	6	4,559	4,559	-414	0.0%	4.3	Y	Y	Y	Y	50%	50%	50%	67%
71 Portsmouth South Enclosure	Outbound	6	4,649	4,504	-145	-3.1%	2.1	Y	Y	Y	Y	33%	33%	83%	83%
71 Portsmouth South Enclosure 72 Portsmouth North Enclosure	Inbound Outbound	7	4,347	4,178	-169	-3.9%	2.6	Y	Ү	Y Y	Y	60%	60%	100%	100%
72 Portsmouth North Enclosure	Inbound	7	4,478	4,445	-33	-0.7%	0.5	Y	У	Y	Y	86%	71%	86%	86%
8 Southampton City Enclosure	Outbound	12	4,927	4,990	63	1.3%	0.9	Ŷ	Y	Y	Y	67%	67%	75%	83%
8 Southampton City Enclosure	Inbound	12	7,743	7,249	-493	-6.4%	5.7	N	N	Y	Y	33%	25%	25%	75%
91 Bitterne West Screenline	Eastbound	5	2,978	2,988	10	0.3%	0.2	Y	Ŷ	Y	Y	80%	100%	100%	100%
91 Bitterne West Screenline	Westbound	5	5,625	5,789	163	2.9%	2.2	Y	Y	Y	Y	80%	80%	80%	100%
92 Bitterne East Screenline	Eastbound	4	3,949	3,829	-120	-3.0%	1.9	Y	Y Y	Y	Y	100%	100%	100%	100%
92 Bitterne East Screenline	Westbound	4	3,561	3,405	-156	-4.4%	2.6	Y	Y	Y	Y	33%	67%	67%	100%
10 Locks Heath North Screenline	Outbound	9	6,695	6,156	-539	-4.4%	6.7	N	N	N	Y	89%	78%	89%	89%
10 Locks Heath North Screenline	Inbound	9	6,839	6,863	25	0.1%	0.3	Y	Y	Y	Y	44%	44%	56%	78%
11 Totton Enclosure	Outbound	19	9,737	9,996	259	2.7%	2.6	Y	Y	Y Y	Y	61%	56%	61%	67%
11 Totton Enclosure	Inbound	19	10,232	10,490	255	2.5%	2.5	Y	Y	Y	Y	78%	61%	78%	89%
12 Eastleigh Enclosure	Outbound	11	5,307	5,462	155	2.9%	2.5	Y	Y	Y	Y	64%	64%	82%	91%
12 Eastleigh Enclosure	Inbound	11	6,033	6,062	30	0.5%	0.4	Y	Y	Y	Y	91%	73%	100%	100%
13 Southampton Enclosure	Outbound	14	11,508	12,060	552	4.8%	5.1	N	Ү	Y	Y	64%	71%	86%	86%
13 Southampton Enclosure	Inbound	14	15,397	15,681	284	1.8%	2.3	Y	Ү	Y Y	Y	50%	50%	71%	86%
36 Solent RSI Cordon	Northbound	3	218	214	-4	-2.0%	0.3	Y	Y	Y	Y	100%	100%	100%	100%
36 Solent RSI Cordon	Southbound	3	200	194	-6	-2.8%	0.4	Y	Y	Y	Y	100%	100%	100%	100%
		286	184,618	184,529	-89	0.0%		83%	90%	93%	97%	63%	59%	75%	84%
Calibration Screenlines															
20 Totton	Eastbound	8	3,923	4,051	127	3.2%	2.0	Y	Y	Y	Y	75%	75%	88%	88%
20 Totton	Westbound	8	3,369	3,377	8	0.2%	0.1	Y	Y	Y	Y	75%	75%	75%	75%
21 North of Southampton	Eastbound	13	5,188	5,019	-169	-3.3%	2.4	Y	Y	Y	Y	38%	23%	46%	54%
21 North of Southampton	Westbound	13	5,530	5,594	63	1.1%	0.9	Y	Y	Y	Y	54%	38%	54%	77%
22 South of Southampton	Eastbound	7	5,068	5,307	240	4.7%	3.3	Y	Y	Y	Y	57%	43%	86%	100%
22 South of Southampton	Westbound	7	4,462	4,651	190	4.2%	2.8	Y	Y	Y	Y	57%	57%	86%	86%
23 Eastleigh	Eastbound	6	8,826	8,387	-439	-5.0%	4.7	N	Y	Y	Y	17%	17%	83%	100%
23 Eastleigh	Westbound	6	7,941	7,996	54	0.7%	0.6	Y	Y	Y	Y	33%	33%	33%	83%
24 Bitterne Northwest to Southeast	Eastbound	15	5,092	4,896	-196	-3.8%	2.8	Y	Y	Y	Y	64%	57%	64%	79%
24 Bitterne Northwest to Southeast	Westbound	15	5,718	5,673	-46	-0.8%	0.6	Y	Y	Y	Y	86%	64%	93%	93%
25 Bitterne Southwest to Northeast	Eastbound	10	4,488	4,567	78	1.7%	1.2	Y	Y	Y	Y	67%	67%	100%	100%
25 Bitterne Southwest to Northeast	Westbound	10	4,819	5,128	309	6.4%	4.4	N	N	Y	Y	67%	67%	89%	100%
26 Fareham North South	Eastbound	8	2,903	3,034	131	4.5%	2.4	Y	Y	Y	Y	50%	50%	63%	63%
26 Fareham North South	Westbound	8	2,418	2,537	119	4.9%	2.4	Y	Y	Y	Y	88%	63%	75%	100%
271 Locks Heath West to East	Northbound	11	5,067	4,759	-307	-6.1%	4.4	N	N	Y	Y	27%	36%	45%	55%
271 Locks Heath West to East	Southbound	11	3,024	3,108	85	2.8%	1.5	Y	Y	Y	Y	91%	73%	91%	100%
272 Fareham West to East	Northbound	4	1,899	1,800	-99	-5.2%	2.3	Y	Y	Y	Y	75%	75%	100%	100%
272 Fareham West to East	Southbound	4	2,056	2,056	0	0.0%	0.0	Y	Y	Y	Y	50%	75%	75%	75%
28 Gosport	Northbound	6	3,469	3,489	20	0.6%	0.3	Y	Y Y	Y	Y	100%	83%	100%	100%
28 Gosport	Southbound	6	2,787	2,746	-42	-1.5%	0.8	Y	Y	Y	Y	67%	50%	83%	83%
29 Portsmouth NorthSouth	Eastbound	15	4,733	4,248	-484	-10.2%	7.2	N	N	N	Y	67%	47%	73%	80%
29 Portsmouth NorthSouth	Westbound	15	5,355	5,011	-484	-10.2%	4.8	N	N	Y	Y	38%	25%	31%	69%
30 Portsmouth KorthSouth 30 Portsmouth EastWest	Northbound	8	3,558	3,405	-152	-4.3%	2.6	Y	Y	Y	Y	63%	25%	31%	75%
30 Portsmouth EastWest	Southbound	8	3,160	2,945	-132	-4.3%	3.9	Y	N	Y	Y	88%	50%	63%	75%
31 Cosham	Eastbound	4	2,428	2,343	-195	-8.0%	4.0	N	N	N	Y	50%	50%	50%	50%
31 Cosham	Westbound	4	1,950	2,233	-155	4.8%	2.1	Y	Y	Y	Y	50%	50%	50%	50%
32 Waterlooville North to South	Eastbound	14	5,189	4,967	-222	-4.3%	3.1	Y	Y	Y	Y	71%	71%	79%	79%
32 Waterlooville North to South 32 Waterlooville North to South	Westbound	14	5,189	5,075	-222	-4.3%	0.5	Y	Y	Y	Y	86%	57%	86%	93%
33 Waterlooville West to East	Northbound	4	1,345	1,264	-56	-6.0%	2.3	Y	N	Y	Y	100%	75%	75%	100%
33 Waterlooville West to East 33 Waterlooville West to East	Southbound	4	1,345	1,264	-81 243	-6.0%	5.7	N	N	N	N N	75%	75%	75%	100%
		6	1,007	1,909	-89	-4.5%	2.0	Y	Y	Y	Y	50%	50%	67%	83%
34 Havant North South 34 Havant North South	Eastbound	6	2,082	2,110	-89	-4.3%	0.6	Y	Y	Y	Y	100%	83%	100%	100%
34 Havant North South 35 Havant East West	Westbound Northbound	9	1,964	1,931	-32	-1.6%	0.8	Y	Y	Y	Y	78%	44%	67%	89%
35 Havant East West 35 Havant East West		9	2,581	2,582	-32	-1.6%	0.7	Y	Y	Y	Y Y	78%	44%	56%	89%
	Southbound	15	4,546	4,628	82	1.8%	1.2	Y	Y	Y	Y Y	93%	44% 80%	100%	100%
201 Winchester Cordon 201 Winchester Cordon	Outbound Inbound	15	4,546	6,085	129	2.2%	1.2	Y	Y	Y	Y	93% 60%	80% 60%	60%	60%
201 WINCHESTER COLOUN	Junnonna	327	5,956	6,085	-1,150	-0.8%	1./	¥ 81%	Y 78%	92%	97%	66%	55%	60% 71%	82%
Motorways		521	141,002	140,012	-1,150	-0.676		0170	/ 070	3270	3/70	0076	JJ76	/170	0270
M27	Eastbound	14										80%	80%	80%	100%
W27	Westbound	14										80%	50%	80%	90%
M3	Eastbound	6										40%	20%	80%	100%
		6										100%	100%	100%	100%
M3	Westbound	4										100%	100%	100%	100%
A3(M)	Northbound	4										1			
A3(M)	Southbound	4										100%	100%	100%	100%
W275	Northbound											100%	100%	100%	100%
M275	Southbound	4								_		100%	100%	100%	100%
M271 M271	Northbound Southbound	3										0%	50%	50%	100%
VIZ/1	sournpound	- 3										67%	0%	67%	67%
		62										79%	69%	85%	96%

Overall

82% 83% 92% 97% <mark>66% 58% 74% 85%</mark>

APPENDIX B CORDONS AND SCREENLINES

			Cordon and									Link Valida			
Cordon/ Screenline	Dir	Sites	Observed	Model	Diff	% Diff	GEH	GEH<= 4	WebTAG v 5%	vithin 7.5%	10%	WebTAG w Abs or %	rithin GEH=5	GEH=7.5	GEH=:
RSI Cordons and Screenlines	1								570	71370	10/0	11000170	GEN 5	ULIT 7.5	ULIT .
L Fareham Enclosure	Outbound	16	7,571	7,921	350	4.6%	4.0	Y	Y	Y	Y	81%	63%	94%	94%
L Fareham Enclosure	Inbound	16	7,844	8,090	246	3.1%	2.8	Y	Y	Y	Y	81%	63%	81%	1009
2 Havant Enclosure	Outbound	10	3,964	3,776	-188	-4.8%	3.0	Y	Y	Y	Y	70%	70%	80%	80%
Havant Enclosure	Inbound	10	4,053	3,941	-111	-2.8%	1.8	Y	Y	Y	Y	60%	60%	70%	809
Hayling Island Enclosure	Outbound	1	912	935	23	2.5%	0.8		Y	Y	Y	100%	100%	100%	100
Hayling Island Enclosure	Inbound	1	945	996	50	5.3%	1.6		Y	Y	Y	100%	100%	100%	100
Hedge End Enclosure	Outbound	8	3,815	4,018	203	5.3%	3.2		Y	Y	Y	75%	75%	75%	88
Hedge End Enclosure	Inbound	8	4,328	4,331	3	0.1%	0.0		Y	Y	Y	88%	88%	100%	100
		18	7,469	7,099	-370	-5.0%	4.3		Y	Y	Y	61%	56%	72%	83
Waterlooville Enclosure	Outbound	18	7,409	7,527	-103	-1.3%	4.3		Y	Y	Y	72%	61%	72%	78
Waterlooville Enclosure	Inbound								Y		Y				_
1 Portsmouth South Enclosure	Outbound	6	3,571	3,586	14	0.4%	0.2			Y		50%	50%	50%	67
1 Portsmouth South Enclosure	Inbound	6	3,833	3,837	3	0.1%	0.1		Y	Y	Y	67%	67%	67%	83
2 Portsmouth North Enclosure	Outbound	7	3,471	3,239	-232	-6.7%	4.0		N	Y	Y	60%	60%	100%	100
2 Portsmouth North Enclosure	Inbound	7	3,360	3,396	35	1.1%	0.6		Y	Y	Y	100%	86%	100%	100
Southampton City Enclosure	Outbound	12	4,983	5,032	49	1.0%	0.7		Y	Y	Y	58%	58%	67%	67
Southampton City Enclosure	Inbound	12	4,883	4,637	-246	-5.0%	3.6		Y	Y	Y	33%	33%	50%	50
1 Bitterne West Screenline	Eastbound	5	3,207	3,025	-182	-5.7%	3.3	Y	N	Y	Y	40%	40%	60%	80
1 Bitterne West Screenline	Westbound	5	2,912	2,704	-208	-7.1%	3.9	Y	N	Y	Y	40%	60%	80%	100
2 Bitterne East Screenline	Eastbound	4	2,694	2,783	89	3.3%	1.7	Y	Y	Y	Y	67%	67%	100%	100
2 Bitterne East Screenline	Westbound	4	2,564	2,696	131	5.1%	2.6		Y	Y	Y	100%	100%	100%	100
0 Locks Heath North Screenline	Outbound	9	4,635	5,013	378	8.1%	5.4		N	N	Y	67%	67%	100%	100
0 Locks Heath North Screenline	Inbound	9	4,698	4,777	78	1.7%	1.1		Y	Y	Y	100%	89%	100%	100
1 Totton Enclosure	Outbound	19	6,430	6,492	62	1.0%	0.8		Y	Y	Y	67%	56%	61%	83
1 Totton Enclosure		19	6,824	6,767	-57	-0.8%	0.8		Y	Y	Y	83%	67%	67%	78
	Inbound	19				-0.8%				Y Y	Y	91%		91%	
2 Eastleigh Enclosure	Outbound		3,776	3,608	-168		2.8		Y Y				73%		91
2 Eastleigh Enclosure	Inbound	11	3,636	3,579	-57	-1.6%	1.0			Y	Y	91%	91%	91%	100
3 Southampton Enclosure	Outbound	14	9,677	9,739	62	0.6%	0.6		Y	Y	Y	57%	57%	71%	86
3 Southampton Enclosure	Inbound	14	9,305	9,182	-123	-1.3%	1.3		Y	Y	Y	64%	64%	86%	93
6 Solent RSI Cordon	Northbound	3	161	149	-12	-7.2%	0.9		Y	Y	Y	100%	100%	100%	100
6 Solent RSI Cordon	Southbound	3	159	161	2	1.1%	0.1		Y	Y	Y	100%	100%	100%	100
		286	133,311	133,034	-278	-0.2%		90%	87%	97%	100%	71%	65%	79%	87
Calibration Screenlines	E 11 1	8	2,469	2,506	37	1.5%	0.7	Y	Y	Y	Y	75%	63%	75%	75
0 Totton	Eastbound	-													
0 Totton	Westbound	8	2,699	2,830	131	4.9%	2.5		Y	Y	Y	75%	75%	75%	75
1 North of Southampton	Eastbound	13	4,231	4,148	-83	-2.0%	1.3		Y	Y	Y	38%	38%	46%	469
1 North of Southampton	Westbound	13	4,117	4,076	-41	-1.0%	0.6		Y	Y	Y	46%	31%	62%	62
2 South of Southampton	Eastbound	7	3,812	3,946	134	3.5%	2.2		Y	Y	Y	43%	43%	57%	86
2 South of Southampton	Westbound	7	4,038	3,910	-128	-3.2%	2.0	Y	Y	Y	Y	57%	57%	86%	86
13 Eastleigh	Eastbound	6	6,318	6,566	248	3.9%	3.1	Y	Y	Y	Y	67%	67%	100%	100
13 Eastleigh	Westbound	6	6,417	6,619	202	3.1%	2.5	Y	Y	Y	Y	67%	67%	67%	100
4 Bitterne Northwest to Southeast	Eastbound	15	4,159	3,887	-271	-6.5%	4.3	N	N	Y	Y	79%	57%	71%	86
4 Bitterne Northwest to Southeast	Westbound	15	4,314	4,115	-199	-4.6%	3.1	Y	Y	Y	Y	71%	57%	86%	93
5 Bitterne Southwest to Northeast	Eastbound	10	3,647	3,653	7	0.2%	0.1	Y	Y	Y	Y	89%	100%	100%	100
25 Bitterne Southwest to Northeast	Westbound	10	3,548	3,484	-63	-1.8%	1.1		Y	Y	Y	67%	78%	89%	100
6 Fareham North South	Eastbound	8	1,906	1,983	77	4.0%	1.1		Y	Y	Y	88%	63%	63%	100
6 Fareham North South	Westbound	8	1,901	1,966	65	3.4%	1.5		Y	Y	Y	88%	63%	88%	100
		11	3,000	3,042	41	1.4%	0.7		Y	Y	Y	73%	64%	64%	100
71 Locks Heath West to East	Northbound														
71 Locks Heath West to East	Southbound	11	3,042	3,086	44	1.4%	0.8		Y	Y	Y	82%	55%	82%	100
72 Fareham West to East	Northbound	4	1,435	1,470	35	2.5%	0.9		Y	Y	Y	50%	50%	75%	75
72 Fareham West to East	Southbound	4	1,377	1,379	2	0.1%	0.1		Y	Y	Y	100%	100%	100%	100
8 Gosport	Northbound	6	2,524	2,510	-14	-0.6%	0.3		Y	Y	Y	83%	67%	83%	83
8 Gosport	Southbound	6	2,472	2,454	-17	-0.7%	0.4	Y	Y	Y	Y	83%	67%	67%	83
9 Portsmouth NorthSouth	Eastbound	15	4,309	4,116	-193	-4.5%	3.0	Y	Y	Y	Y	53%	33%	47%	73
9 Portsmouth NorthSouth	Westbound	16	4,319	4,225	-94	-2.2%	1.4	Y	Y	Y	Y	44%	25%	56%	75
0 Portsmouth EastWest	Northbound	8	2,705	2,620	-85	-3.2%	1.7	Y	Y	Y	Y	63%	38%	50%	100
0 Portsmouth EastWest	Southbound	8	2,742	2,753	10	0.4%	0.2		Y	Y	Y	75%	50%	63%	88
1 Cosham	Eastbound	4	1,562	1,636	74	4.8%	1.9		Y	Ŷ	Ŷ	50%	50%	50%	50
1 Cosham	Westbound	4	1,502	1,543	25	1.7%	0.6		Y	Y	Y	50%	50%	50%	50
2 Waterlooville North to South	i	4	3,869	3,724	-145	-3.8%	2.4		Y	Y	Y	86%	71%	71%	86
	Eastbound	14	3,869	3,724	-145	-3.8%	2.4		Y	Y Y	Y	86%	71%	71%	86
2 Waterlooville North to South	Westbound								-						
3 Waterlooville West to East	Northbound	4	1,134	1,068	-67	-5.9%	2.0		N	Y	Y	100%	75%	100%	100
3 Waterlooville West to East	Southbound	4	1,186	1,158	-28	-2.4%	0.8		Y	Y	Y	100%	75%	100%	100
4 Havant North South	Eastbound	6	1,631	1,549	-81	-5.0%	2.0		Y	Y	Y	50%	50%	67%	67
4 Havant North South	Westbound	6	1,583	1,549	-34	-2.1%	0.8		Y	Y	Y	83%	50%	100%	100
5 Havant East West	Northbound	9	1,729	1,772	43	2.5%	1.0		Y	Y	Y	67%	33%	78%	78
5 Havant East West	Southbound	9	1,781	1,754	-27	-1.5%	0.6	Y	Y	Y	Y	100%	67%	78%	89
01 Winchester Cordon	Outbound	15	3,678	3,590	-88	-2.4%	1.5	Y	Y	Y	Y	100%	93%	100%	100
01 Winchester Cordon	Inbound	15	3,616	3,388	-228	-6.3%	3.9	-	N	Y	Y	87%	80%	87%	100
		327	108,737	107,897	-840	-0.8%		97%	92%	100%	100%	72%	59%	74%	86
Notorways	- 11 · 1	<u></u>										100-1	10001	100-1	1.0
127	Eastbound	14										100%	100%	100%	100
127	Westbound	14										100%	100%	100%	100
13	Eastbound	6										100%	100%	100%	100
13	Westbound	6										100%	100%	100%	100
3(M)	Northbound	4										100%	100%	100%	100
3(M)	Southbound	4										67%	67%	100%	100
1275	Northbound	4										100%	100%	100%	100
1275	Southbound	4										100%	100%	100%	10
1271	Northbound	3										100%	100%	100%	10
1271	Southbound	3										100%	100%	100%	10

M3	Eastbound	6					100%	100%	100%
M3	Westbound	6					100%	100%	100%
A3(M)	Northbound	4					100%	100%	100%
A3(M)	Southbound	4					67%	67%	100%
M275	Northbound	4					100%	100%	100%
M275	Southbound	4					100%	100%	100%
M271	Northbound	3					100%	100%	100%
M271	Southbound	3					100%	100%	100%
		62					98%	98%	100%

Overall

87% 94% 89% 98% 100% 74% 65% 78%

100% 100%

APPENDIX B CORDONS AND SCREENLINES

РМ

CORDONS AND SCREENLINES			PM Vehicles												
Cordon / Scroonline	Dir	Citor	Cordon and		Validation Diff	0∕ D;ff	CEH		WahTAC	vithin		Link Valida			
Cordon/ Screenline	Dir	Sites	Observed	Model	Diff	% Diff	GEH	GEH<= 4	WebTAG v 5%	7.5%	10%	Abs or %	GEH=5	GEH=7.5	GEH=10
RSI Cordons and Screenlines															
1 Fareham Enclosure	Outbound	16	10,445	10,518	73	0.7%	0.7	Y	Y	Y	Y	88%	75%	81%	94%
1 Fareham Enclosure	Inbound	16	10,189	10,291	103	1.0%	1.0	Y	Y	Y	Y	88%	69%	88%	100%
2 Havant Enclosure	Outbound	10	5,228	5,178	-50	-1.0%	0.7	Y	Y	Y	Y	50%	60%	60%	70%
2 Havant Enclosure	Inbound	10	5,539	5,561	22	0.4%	0.3	Y	Y	Y	Y	50%	50%	50%	60%
3 Hayling Island Enclosure	Outbound	1	856	777	-79	-9.3%	2.8	Y	Y	N	Y	100%	100%	100%	100%
3 Hayling Island Enclosure	Inbound	1	1,442	1,438	-4	-0.3%	0.1	Y	Y	Y	Y	100%	100%	100%	100%
4 Hedge End Enclosure	Outbound	8	4,735	4,884	149	3.1%	2.1	Y	Y	Y	Y	63%	63%	63%	63%
4 Hedge End Enclosure	Inbound	8	6,029	5,744	-285	-4.7%	3.7	Y	Y	Y	Y	38%	50%	50%	63%
5 Waterlooville Enclosure	Outbound	18	10,142	9,819	-323	-3.2%	3.2	Y	Y	Y	Y	72%	67%	83%	83%
5 Waterlooville Enclosure	Inbound	18	11,576	11,862	286	2.5%	2.6	Y	Y	Y	Y	67%	61%	78%	78%
71 Portsmouth South Enclosure	Outbound	6	4,326	4,275	-52	-1.2%	0.8	Y	Y	Y	Y	33%	33%	33%	50%
71 Portsmouth South Enclosure	Inbound	6	5,376	5,446	69	1.3%	0.9	Y	Y	Y	Y	50%	50%	67%	83%
72 Portsmouth North Enclosure	Outbound	7	4,558	4,457	-101	-2.2%	1.5	Y	Y	Y	Y	40%	20%	80%	80%
72 Portsmouth North Enclosure	Inbound	7	4,223	4,333	110	2.6%	1.7	Y	Y	Y	Y	57%	29%	71%	86%
8 Southampton City Enclosure	Outbound	12	7,347	7,131	-216	-2.9%	2.5	Y	Y	Y	Y	42%	50%	58%	67%
8 Southampton City Enclosure	Inbound	12	5,548	5,122	-425	-7.7%	5.8	N	N	N	Y	42%	33%	42%	58%
91 Bitterne West Screenline	Eastbound	5	5,545	5,648	103	1.9%	1.4	Y	Y	Y	Y	80%	80%	80%	80%
91 Bitterne West Screenline	Westbound	5	2,908	2,802	-107	-3.7%	2.0	Y	Y	Y	Y	60%	60%	60%	60%
92 Bitterne East Screenline	Eastbound	4	3,748	3,641	-107	-2.9%	1.8	Y	Y	Y	Y	33%	33%	33%	100%
92 Bitterne East Screenline	Westbound	4	2,951	2,975	24	0.8%	0.4	Y	Y	Y	Y	33%	33%	33%	33%
10 Locks Heath North Screenline	Outbound	9	6,806	6,454	-352	-5.2%	4.3	N Y	Y	Y Y	Y Y	89%	89%	89%	100%
10 Locks Heath North Screenline	Inbound		6,898	7,002	104	1.5%	1.2		Y			67%	67%	89%	100%
11 Totton Enclosure	Outbound	19	9,420	9,515	95	1.0%	1.0	Y		Y	Y	50%	50%	50%	67%
11 Totton Enclosure	Inbound	19	10,337	10,298	-40	-0.4%	0.4	Y V	Y	Y	Y	61%	50%	61%	72%
12 Eastleigh Enclosure	Outbound	11	5,681	5,453	-228 284	-4.0%	3.1	Y V	Y Y	Y Y	Y Y	55%	55%	82%	91%
12 Eastleigh Enclosure	Inbound	11 14	5,329	5,612	284 355	5.3% 2.4%	3.8	Y Y	Y	Y Y	Y Y	55%	55%	91%	100%
13 Southampton Enclosure	Outbound	14	14,550 12,179	14,905 12,314			2.9		Y Y	Y Y	Y Y	71%	71%	86%	86% 79%
13 Southampton Enclosure	Inbound				136	1.1%	1.2	Y			Y	64%	64%	71%	
36 Solent RSI Cordon	Northbound	3	201	190	-11	-5.5%	0.8	Y	Y Y	Y Y	Y Y	100%	100%	100%	100%
36 Solent RSI Cordon	Southbound	3 286	168 184,277	171 183,813	3 -465	1.9% -0.3%	0.2	Y 93%	97%	93%	¥ 100%	100%	100% 58%	100% 70%	100% 79%
Calibration Screenlines		200	164,277	105,015	-405	-0.5%		95%	9776	95%	100%	62%	36%	70%	79%
	En ath a un al	8	3,411	3,626	215	6.3%	3.6	Y	N	Y	Y	50%	50%	75%	88%
20 Totton 20 Totton	Eastbound Westbound	8	4,218	4,399	181	4.3%	2.8	Y	Y	Y	Y	75%	75%	75%	75%
		13	5,754	5,658	-96	-1.7%	1.3	Y	Y	Y	Y	54%	46%	54%	54%
21 North of Southampton	Eastbound	13	5,535	5,550	-50	0.3%	0.2	Y	Y	Y	Y	38%	38%	46%	54%
21 North of Southampton	Westbound	7	4,563	4,670	107	2.3%	1.6	Y	Y	Y	Y	71%	71%	86%	86%
22 South of Southampton	Eastbound	7	4,997	4,962	-35	-0.7%	0.5	Y	Y	Y	Y	57%	57%	57%	71%
22 South of Southampton	Westbound	6	8,112	8,225	113	1.4%	1.2	Y	Y	Y	Y	33%	33%	100%	100%
23 Eastleigh	Eastbound Westbound	6	8,778	8,721	-58	-0.7%	0.6	Y	Y	Y	Y	50%	50%	67%	67%
23 Eastleigh 24 Bitterne Northwest to Southeast		15	5,791	5,468	-323	-5.6%	4.3	N	N	Y	Y	64%	43%	57%	64%
24 Bitterne Northwest to Southeast	Eastbound Westbound	15	5,857	5,610	-247	-4.2%	3.3	Y	Y	Y	Y	57%	50%	71%	93%
25 Bitterne Southwest to Northeast	Eastbound	10	5,101	5,499	398	7.8%	5.5	N	N	N	Y	67%	78%	71%	89%
25 Bitterne Southwest to Northeast	Westbound	10	4,690	4,198	-492	-10.5%	7.4	N	N	N	Y	67%	56%	89%	89%
26 Fareham North South	Eastbound	8	2,546	2,694	148	5.8%	2.9	Y	N	Y	Y Y	75%	50%	63%	100%
26 Fareham North South	Westbound	8	2,896	2,982	86	3.0%	1.6	Ŷ	Y	Y	Y	88%	75%	75%	88%
271 Locks Heath West to East	Northbound	11	3,509	3,377	-132	-3.8%	2.3	Y	Y	Y	Y	64%	55%	55%	82%
271 Locks Heath West to East	Southbound	11	5,200	4,820	-380	-7.3%	5.4	N	N	Ŷ	Y	36%	36%	45%	64%
272 Fareham West to East	Northbound	4	2,256	2,308	53	2.3%	1.1	Y	Y	Y Y	Y Y	100%	100%	100%	100%
272 Fareham West to East	Southbound	4	2,230	2,370	136	6.1%	2.8	Ŷ	N	Ŷ	Y Y	75%	75%	75%	100%
28 Gosport	Northbound	6	3,007	2,947	-60	-2.0%	1.1	Ŷ	Y	Ŷ	Y Y	83%	83%	83%	83%
		6	3,499	3,543	44	1.3%	0.7	Y Y	Y	Y Y	Y.	83%	83%	83%	83%
28 Gosport 29 Portsmouth NorthSouth	Southbound Eastbound	15	5,537	5,315	-221	-4.0%	3.0	Y	Y	Y	Y	47%	33%	47%	73%
29 Portsmouth NorthSouth	Westbound	16	5,453	5,337	-116	-2.1%	1.6	Y	Y	Y	Y Y	38%	19%	63%	75%
30 Portsmouth EastWest	Northbound	8	3,185	3,615	430	13.5%	7.4	N	N	N	N	88%	63%	75%	88%
30 Portsmouth EastWest	Southbound	8	4,040	4,066	430		0.4	Y	Y	Y	Y	63%	25%	38%	63%
31 Cosham	Eastbound	4	2,246	2,321	75	3.3%	1.6	Ŷ	Y	Y	Y	50%	50%	50%	75%
31 Cosham	Westbound	4	2,240	2,432	218	9.8%	4.5	N	N	N	Y	50%	50%	75%	75%
32 Waterlooville North to South	Eastbound	14	5,214	5,266	50	1.0%	0.7	Y	Y	Y	Y	64%	57%	64%	93%
32 Waterlooville North to South 32 Waterlooville North to South	Westbound	14	5,589	5,686	98	1.0%	1.3	Y	Y	Y	Y	64%	50%	57%	79%
33 Waterlooville West to East	Northbound	4	1,712	1,842	129	7.6%	3.1	Y	N	N	Y	75%	25%	75%	100%
33 Waterlooville West to East	Southbound	4	1,712	1,661	21	1.3%	0.5	Y	Y	Y	Y	100%	75%	75%	100%
33 Waterlooville West to East 34 Havant North South	Eastbound	6	2,290	2,240	-50		1.0	Y	Y	Y	Y	67%	67%	67%	83%
34 Havant North South	Westbound	6	2,088	2,195	107	5.1%	2.3	Y	Y	Y	Y	100%	100%	100%	100%
35 Havant East West	Northbound	9	2,542	2,155	-254	-10.0%	5.2	N	N	N	Y	67%	44%	56%	67%
35 Havant East West	Southbound	9	2,362	2,403	42		0.9	Y	Y	Y	Y	89%	78%	78%	78%
201 Winchester Cordon	Outbound	15	5,827	5,879	52	0.9%	0.3	Y	Y	Y	Y	100%	67%	80%	87%
201 Winchester Cordon	Inbound	15	5,050	4,694	-355		5.1	N	N	Y	Y Y	93%	80%	93%	93%
Los minerester coradit	moound	327	148,943	148,866	-333		5.1	78%	67%	83%	97%	66%	55%	68%	80%
Motorways		<u> </u>		.,	. /										
M27	Eastbound	14										70%	70%	90%	90%
M27	Westbound	14										100%	100%	100%	100%
M3	Eastbound	6										100%	100%	100%	100%
M3	Westbound	6										100%	100%	100%	100%
A3(M)	Northbound	4										100%	50%	100%	100%
A3(M)	Southbound	4										67%	67%	67%	67%
M275	Northbound	4										0%	0%	0%	100%
								-				-			100%
M275	Southbound	4										100%	100%	100%	
M275 M271	Southbound Northbound	4										100%	50%	100%	100%
	Southbound Northbound Southbound											-			

Overall

85% 80% 88% 98% <mark>66% 58% 71% 81%</mark>

APPENDIX C Journey Time Validation

Part 1 Routes Undertaken for Previous 2010 Base, and Updated to TrafficMaster 2014

No. Route	Description	TM Tot.Time(s)	Model Tot.Time(s)	Diff.	%Diff.	WebTAG <=15%	<=20%	<=25%
1 1EB	A336 RINGWOOD ROAD - A35 BURGESS ROAD	1,509	1,510	1	0%	Y	Y	Y
1 1WB	A35 BURGESS ROAD - A35 WINCHESTER ROAD	1,552	1,639	87	6%	Y	Y	Y
2 2EB	A35 MILLBROOK ROAD WEST - A3025 HAMBLE LANE	1,473	1,226	-247	-17%	N	Y	Y
2 2WB	A3025 HAMBLE LANE - A35 MILLBROOK ROAD WEST	1,539	1,383	-156	-10%	Y	Y	Y
3 3NB	A33 DORSET STREET - A335 TWYFORD ROAD	1,219	1,118	-101	-8%	Y	Y	Y
3 3SB	A335 TWYFORD ROAD - A33 DORSET STREET	1,123	1,235	112	10%	Y	Y	Y
4 4NB	A33 DORSET STREET - A33	545	572	27	5%	Y	Y	Y
4 4SB	A33 - A33 DORSET STREET	731	712	-19	-3%	Y	Y	Y
5 5NB	A3024 BURSLEDON ROAD - A33 THE AVENUE	1,513	1,402	-111	-7%	Y	Y	Y
5 5SB	A33 THE AVENUE - A3024 BURSLEDON ROAD	992	1,190	197	20%	N	Y	Y
6 6NB	A27 WEST END ROAD - A27 BASSETT GREEN ROAD	965	1,051	86	9%	Y	Y	Y
6 6SB	A27 BASSETT GREEN ROAD - A27 WEST END ROAD	911	937	26	3%	Y	Y	Y
7 7NB	A3024 BRUNSWICK PLACE - A3057 ROMSEY ROAD	1,200	1,098	-102	-8%	Y	Y	Y
7 7SB	A3057 ROMSEY ROAD - A3024 BRUNSWICK PLACE	1,173	1,201	28	2%	Y	Y	Y
8 8WB	A27 WESTERN WAY - A27 BRIDGE ROAD	1,083	1,299	216	20%	N	Y	Y
8 8EB	A27 BRIDGE ROAD - A27 WESTERN WAY	1,277	1,356	79	6%	Y	Y	Y
9 9NB	A32 MUMBY ROAD - B3334 TITCHFIELD ROAD	1,159	1,178	19	2%	Y	Y	Y
9 9SB	B3334 TITCHFIELD ROAD - A32 MUMBY ROAD	1,138	1,094	-43	-4%	Y	Y	Y
10 10NB	A32 FAREHAM ROAD - A27 WESTERN ROAD	1,534	1,461	-73	-5%	Y	Y	Y
10 10SB	A27 WESTERN ROAD - A27 WESTERN ROAD	1,427	1,544	116	8%	Y	Y	Y
11 11NB	A397 NORTHERN ROAD - A3 LONDON ROAD	1,024	1,239	215	21%	N	N	Y
11 11SB	A3 LONDON ROAD - A397 NORTHERN ROAD	1,073	1,474	401	37%	N	Ν	Ν
12 12NB	B2177 PORTSDOWN HILL ROAD - B2149 HAVANT ROAD	908	1,314	405	45%	N	N	Ν
12 12SB	B2149 HAVANT ROAD - B2177 PORTSDOWN HILL ROAD	835	1,323	488	58%	N	Ν	Ν
13 13NB	A2030 VELDER AVENUE - A2030 EASTERN ROAD	743	594	-149	-20%	N	N	Y
13 13SB	A2030 EASTERN ROAD - A2030 VELDER AVENUE	631	568	-63	-10%	Y	Y	Y
14 14NB	A288 MILTON ROAD - A288 COPNOR ROAD	456	438	-18	-4%	Y	Y	Y
14 14SB	A288 COPNOR ROAD - A288 MILTON ROAD	527	476	-51	-10%	Y	Y	Y
15 15NB	M275 A27	224	275	50	22%	Y	Y	Y
15 15SB	A27 - M275	260	283	23	9%	Y	Y	Y
16 16NB	A2047 KINGSTON CRESCENT - A3 SOUTHAMPTON ROAD	882	781	-101	-11%	Y	Y	Y
16 16SB	A3 SOUTHAMPTON ROAD - A2047 KINGSTON CRESCENT	783	695	-88	-11%	Y	Y	Y
17 17NB	A3 MARKETWAY - A27 WESTERN ROAD	757	639	-118	-16%	N	Y	Y
17 17SB	A27 WESTERN ROAD - A3 MARKETWAY	714	727	13	2%	Y	Y	Y
Total		33,881	35,030	1149	3%			

AM

Part 2 Routes Newly /	Analysed for 2015 Base	АМ						
No. Route	Description	TM Tot.Time(s)	Model Tot.Time(s)	Diff.	%Diff.	WebTAG <=15%	<=20%	<=25%
18 1NB	M3J11 - A32	922	915	-8	-1%	Y	Y	Y
18 1SB	A32 - M3J11	827	816	-11	-1%	Y	Y	Y
19 2NB	M27J2 - A303	1,930	2,050	120	6%	Y	Y	Y
19 2SB	A303 - M27J2	2,010	2,290	280	14%	Y	Y	Y
20 3NB	M27J2 - A34	1,937	2,107	170	9%	Y	Y	Y
20 3SB	A34 - M27J2	1,856	1,977	121	6%	Y	Y	Y
21 SEC1EB	Six Dials Jun to Windhover Rbt	689	760	72	10%	Y	Y	Y
21 SEC1WB	Windhover Rbt to Six Dials Jun	1,021	938	-83	-8%	Y	Y	Y
22 SEC2NB	M27J7 to M3J11	1,344	1,356	12	1%	Y	Y	Y
22 SEC2SB	M3J11 - M27J7	1,309	1,274	-35	-3%	Y	Y	Y
23 SEC3NB	M27J10 - M3J11	1,898	1,765	-133	-7%	Y	Y	Y
23 SEC3SB	M3J11 - M27J10	1,726	1,620	-106	-6%	Y	Y	Y
Total		17.470	17.869	398	2%			

Part 3 Motorways - M27 and M3

~ ~ ~ ~

No. Route	Description	TM Tot.Time(s)	Model Tot.Time(s)	Diff.	%Diff.	WebTAG <=15%	<=20%	<=25%
24 24EB	M27 Eastbound	1,253	1,214	-39	-3%	Y	Y	Y
24 24WB	M27 Westbound	1,344	1,532	188	14%	Y	Y	Y
25 25SB	M3 Southbound	1,146	1,241	96	8%	Y	Y	Y
25 25NB	M3 Northbound	1,415	1,633	218	15%	Y	Y	Y
Total		5,157	5,620	463	9%			
Percenta	age within criteria					82%	90%	94%

APPENDIX C Journey Time Validation

No. Route	Description	TM Tot.Time(s)	Model Tot.Time(s)	Diff.	%Diff.	WebTAG <=15%	<=20%	<=25%
1 1EB	A336 RINGWOOD ROAD - A35 BURGESS ROAD	1,479	1,287	-193	-13%	Y	Y	Y
1 1WB	A35 BURGESS ROAD - A35 WINCHESTER ROAD	1,539	1,298	-241	-16%	N	Y	Y
2 2EB	A35 MILLBROOK ROAD WEST - A3025 HAMBLE LANE	1,454	1,122	-332	-23%	N	Ν	Y
2 2WB	A3025 HAMBLE LANE - A35 MILLBROOK ROAD WEST	1,437	1,128	-309	-22%	N	N	Y
3 3NB	A33 DORSET STREET - A335 TWYFORD ROAD	1,093	1,016	-77	-7%	Y	Y	Y
3 3SB	A335 TWYFORD ROAD - A33 DORSET STREET	1,090	1,095	5	0%	Y	Y	Y
4 4NB	A33 DORSET STREET - A33	472	424	-48	-10%	Y	Y	Y
4 4SB	A33 - A33 DORSET STREET	487	492	5	1%	Y	Y	Y
5 5NB	A3024 BURSLEDON ROAD - A33 THE AVENUE	1,176	1,132	-44	-4%	Y	Y	Y
5 5SB	A33 THE AVENUE - A3024 BURSLEDON ROAD	1,167	1,146	-22	-2%	Y	Y	Y
6 6NB	A27 WEST END ROAD - A27 BASSETT GREEN ROAD	880	892	12	1%	Y	Y	Y
6 6SB	A27 BASSETT GREEN ROAD - A27 WEST END ROAD	902	927	25	3%	Y	Y	Y
7 7NB	A3024 BRUNSWICK PLACE - A3057 ROMSEY ROAD	1,348	1,063	-285	-21%	N	N	Y
7 7SB	A3057 ROMSEY ROAD - A3024 BRUNSWICK PLACE	1,199	1,100	-99	-8%	Y	Y	Y
8 8WB	A27 WESTERN WAY - A27 BRIDGE ROAD	1,104	1,049	-56	-5%	Y	Y	Y
8 8EB	A27 BRIDGE ROAD - A27 WESTERN WAY	1,148	1,167	20	2%	Y	Y	Y
9 9NB	A32 MUMBY ROAD - B3334 TITCHFIELD ROAD	1,056	1,005	-51	-5%	Y	Y	Y
9 9SB	B3334 TITCHFIELD ROAD - A32 MUMBY ROAD	1,079	1,024	-55	-5%	Y	Y	Y
10 10NB	A32 FAREHAM ROAD - A27 WESTERN ROAD	1,401	1,314	-87	-6%	Y	Y	Y
10 10SB	A27 WESTERN ROAD - A27 WESTERN ROAD	1,360	1,193	-167	-12%	Y	Y	Y
11 11NB	A397 NORTHERN ROAD - A3 LONDON ROAD	1,107	1,162	55	5%	Y	Y	Y
11 11SB	A3 LONDON ROAD - A397 NORTHERN ROAD	1,133	1,258	125	11%	Y	Y	Y
12 12NB	B2177 PORTSDOWN HILL ROAD - B2149 HAVANT ROAD	946	1,178	232	25%	N	N	Y
12 12SB	B2149 HAVANT ROAD - B2177 PORTSDOWN HILL ROAD	858	1,146	288	34%	N	N	N
13 13NB	A2030 VELDER AVENUE - A2030 EASTERN ROAD	647	527	-120	-19%	N	Y	Y
13 13SB	A2030 EASTERN ROAD - A2030 VELDER AVENUE	594	539	-55	-9%	Y	Y	Y
14 14NB	A288 MILTON ROAD - A288 COPNOR ROAD	494	419	-75	-15%	Y	Y	Y
14 14SB	A288 COPNOR ROAD - A288 MILTON ROAD	610	456	-154	-25%	N	N	N
15 15NB	M275 A27	224	229	5	2%	Y	Y	Y
15 15SB	A27 - M275	256	231	-25	-10%	Y	Y	Y
16 16NB	A2047 KINGSTON CRESCENT - A3 SOUTHAMPTON ROAD	778	711	-67	-9%	Y	Y	Y
16 16SB	A3 SOUTHAMPTON ROAD - A2047 KINGSTON CRESCENT	759	630	-129	-17%	N	Y	Y
17 17NB	A3 MARKETWAY - A27 WESTERN ROAD	672	615	-57	-8%	Y	Y	Y
17 17SB	A27 WESTERN ROAD - A3 MARKETWAY	671	582	-89	-13%	Y	Y	Y
Total		32,617	30.554	-2063	-6%			

Part 2 Routes Newly Analysed for 2015 Base

No. Route	Description	TM Tot.Time(s)	Model Tot.Time(s)	Diff.	%Diff.	WebTAG <=15%	<=20%	<=25%
18 1NB	M3J11 - A32	775	770	-5	-1%	Y	Y	Y
18 1SB	A32 - M3J11	790	806	16	2%	Y	Y	Y
19 2NB	M27J2 - A303	2,017	1,960	-57	-3%	Y	Y	Y
19 2SB	A303 - M27J2	2,020	2,022	2	0%	Y	Y	Y
20 3NB	M27J2 - A34	1,815	1,957	142	8%	Y	Y	Y
20 3SB	A34 - M27J2	1,825	1,959	135	7%	Y	Y	Y
21 SEC1EB	Six Dials Jun to Windhover Rbt	783	728	-55	-7%	Y	Y	Y
21 SEC1WB	Windhover Rbt to Six Dials Jun	740	749	10	1%	Y	Y	Y
22 SEC2NB	M27J7 to M3J11	1,235	1,160	-75	-6%	Y	Y	Y
22 SEC2SB	M3J11 - M27J7	1,272	1,237	-35	-3%	Y	Y	Y
23 SEC3NB	M27J10 - M3J11	1,710	1,614	-97	-6%	Y	Y	Y
23 SEC3SB	M3J11 - M27J10	1,659	1,593	-66	-4%	Y	Y	Y
Total		16,640	16,557	-84	-1%			

IP

No. Route De	escription	TM Tot.Time(s	Model Tot.Time(s)	Diff.	%Diff.	WebTAG <=15%	<=20%	<=25%
24 24EB M	27 Eastbound	945	966	21	2%	Y	Y	Y
24 24WB M	27 Westbound	956	1,015	59	6%	Y	Y	Y
25 25SB M	3 Southbound	1,092	1,160	68	6%	Y	Y	Y
25 25NB M	3 Northbound	1,081	1,185	105	10%	Y	Y	Y
Total		4,074	4,327	253	6%			

APPENDIX C Journey Time Validation

Part 1 Routes Undertaken for Previous 2010 Base, and Updated to TrafficMaster 2014

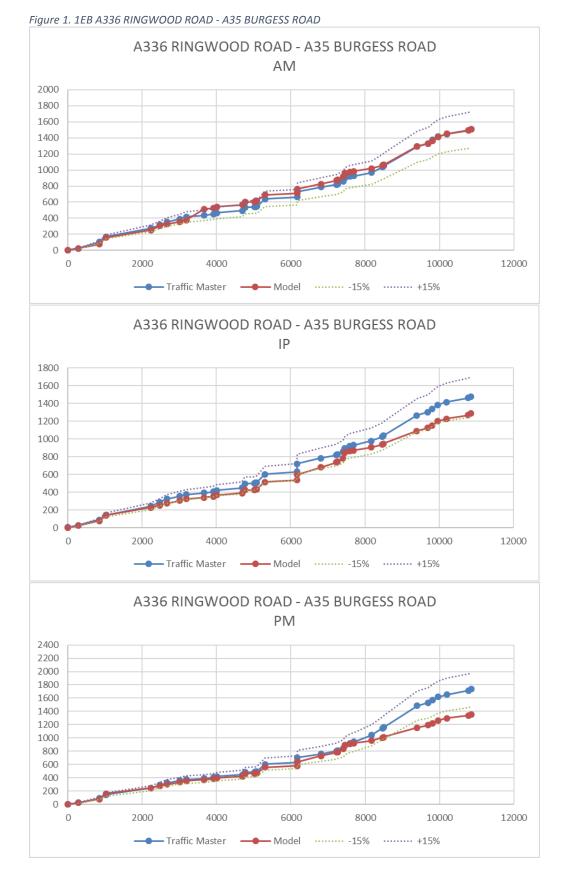
No. Route	Description	TM Tot.Time(s)	Model Tot.Time(s)	Diff.	%Diff.	WebTAG <=15%	<=20%	<=25%
1 1EB	A336 RINGWOOD ROAD - A35 BURGESS ROAD	1,734	1,355	-379	-22%	Ν	Ν	Y
1 1WB	A35 BURGESS ROAD - A35 WINCHESTER ROAD	1,771	1,520	-251	-14%	Y	Y	Y
2 2EB	A35 MILLBROOK ROAD WEST - A3025 HAMBLE LANE	1,513	1,299	-213	-14%	Y	Y	Y
2 2WB	A3025 HAMBLE LANE - A35 MILLBROOK ROAD WEST	1,530	1,394	-136	-9%	Y	Y	Y
3 3NB	A33 DORSET STREET - A335 TWYFORD ROAD	1,470	1,062	-408	-28%	Ν	N	Ν
3 3SB	A335 TWYFORD ROAD - A33 DORSET STREET	1,469	1,157	-312	-21%	N	N	Y
4 4NB	A33 DORSET STREET - A33	676	448	-228	-34%	Ν	N	Ν
4 4SB	A33 - A33 DORSET STREET	613	603	-10	-2%	Y	Y	Y
5 5NB	A3024 BURSLEDON ROAD - A33 THE AVENUE	1,239	1,314	74	6%	Y	Y	Y
5 5SB	A33 THE AVENUE - A3024 BURSLEDON ROAD	1,589	1,279	-310	-20%	Ν	Y	Y
6 6NB	A27 WEST END ROAD - A27 BASSETT GREEN ROAD	915	959	44	5%	Y	Y	Y
6 6SB	A27 BASSETT GREEN ROAD - A27 WEST END ROAD	1,159	946	-212	-18%	N	Y	Y
7 7NB	A3024 BRUNSWICK PLACE - A3057 ROMSEY ROAD	1,516	1,114	-402	-27%	N	N	Ν
7 7SB	A3057 ROMSEY ROAD - A3024 BRUNSWICK PLACE	1,221	1,150	-71	-6%	Y	Y	Y
8 8WB	A27 WESTERN WAY - A27 BRIDGE ROAD	1,505	1,135	-369	-25%	N	N	Y
8 8EB	A27 BRIDGE ROAD - A27 WESTERN WAY	1,366	1,344	-22	-2%	Y	Y	Y
9 9NB	A32 MUMBY ROAD - B3334 TITCHFIELD ROAD	1,066	1,076	10	1%	Y	Y	Y
9 9SB	B3334 TITCHFIELD ROAD - A32 MUMBY ROAD	1,277	1,156	-122	-10%	Y	Y	Y
10 10NB	A32 FAREHAM ROAD - A27 WESTERN ROAD	1,534	1,453	-81	-5%	Y	Y	Y
10 10SB	A27 WESTERN ROAD - A27 WESTERN ROAD	1,643	1,404	-239	-15%	Y	Y	Y
11 11NB	A397 NORTHERN ROAD - A3 LONDON ROAD	1,102	1,364	262	24%	Ν	N	Y
11 11SB	A3 LONDON ROAD - A397 NORTHERN ROAD	1,118	1,398	280	25%	N	N	Ν
12 12NB	B2177 PORTSDOWN HILL ROAD - B2149 HAVANT ROAD	955	1,219	263	28%	Ν	N	N
12 12SB	B2149 HAVANT ROAD - B2177 PORTSDOWN HILL ROAD	889	1,337	448	50%	N	N	Ν
13 13NB	A2030 VELDER AVENUE - A2030 EASTERN ROAD	792	560	-232	-29%	Ν	N	N
13 13SB	A2030 EASTERN ROAD - A2030 VELDER AVENUE	768	559	-209	-27%	N	N	Ν
14 14NB	A288 MILTON ROAD - A288 COPNOR ROAD	535	420	-115	-21%	Ν	N	Y
14 14SB	A288 COPNOR ROAD - A288 MILTON ROAD	637	479	-159	-25%	N	N	Y
15 15NB	M275 A27	217	339	121	56%	N	N	N
15 15SB	A27 - M275	247	258	11	4%	Y	Y	Y
16 16NB	A2047 KINGSTON CRESCENT - A3 SOUTHAMPTON ROAD	897	837	-60	-7%	Y	Y	Y
16 16SB	A3 SOUTHAMPTON ROAD - A2047 KINGSTON CRESCENT	832	698	-134	-16%	N	Y	Y
17 17NB	A3 MARKETWAY - A27 WESTERN ROAD	704	714	9	1%	Y	Y	Y
17 17SB	A27 WESTERN ROAD - A3 MARKETWAY	731	680	-51	-7%	Y	Y	Y
Total		37,229	34,029	-3201	-9%			

PM

Part 2 Routes Newly /	Analysed for 2015 Base	РМ						
No. Route	Description	TM Tot.Time(s)	Model Tot.Time(s)	Diff.	%Diff.	WebTAG <=15%	<=20%	<=25%
18 1NB	M3J11 - A32	889	780	-109	-12%	Y	Y	Y
18 1SB	A32 - M3J11	988	843	-146	-15%	Y	Y	Y
19 2NB	M27J2 - A303	1,995	1,959	-36	-2%	Y	Y	Y
19 2SB	A303 - M27J2	1,986	2,050	63	3%	Y	Y	Y
20 3NB	M27J2 - A34	1,924	1,976	52	3%	Y	Y	Y
20 3SB	A34 - M27J2	2,086	1,986	-101	-5%	Y	Y	Y
21 SEC1EB	Six Dials Jun to Windhover Rbt	902	881	-21	-2%	Y	Y	Y
21 SEC1WB	Windhover Rbt to Six Dials Jun	827	884	57	7%	Y	Y	Y
22 SEC2NB	M27J7 to M3J11	1,315	1,324	9	1%	Y	Y	Y
22 SEC2SB	M3J11 - M27J7	1,400	1,333	-67	-5%	Y	Y	Y
23 SEC3NB	M27J10 - M3J11	1,681	1,643	-39	-2%	Y	Y	Y
23 SEC3SB	M3J11 - M27J10	1,736	1,657	-79	-5%	Y	Y	Y
Total		17,731	17,315	-416	-2%			

Part 3

No. Route	Description	TM Tot.Time(s)	Model Tot.Time(s)	Diff.	%Diff.	WebTAG <=15%	<=20%	<=25%
24 24EB	M27 Eastbound	1,195	1,304	109	9%	Y	Y	Y
24 24WB	M27 Westbound	1,164	1,343	179	15%	Y	Y	Y
25 25SB	M3 Southbound	1,462	1,348	-114	-8%	Y	Y	Y
25 25NB	M3 Northbound	1,093	1,228	136	12%	Y	Y	Y
Total		4,913	5,223	310	6%			


РМ

APPENDIX D

TIME-DISTANCE CHARTS

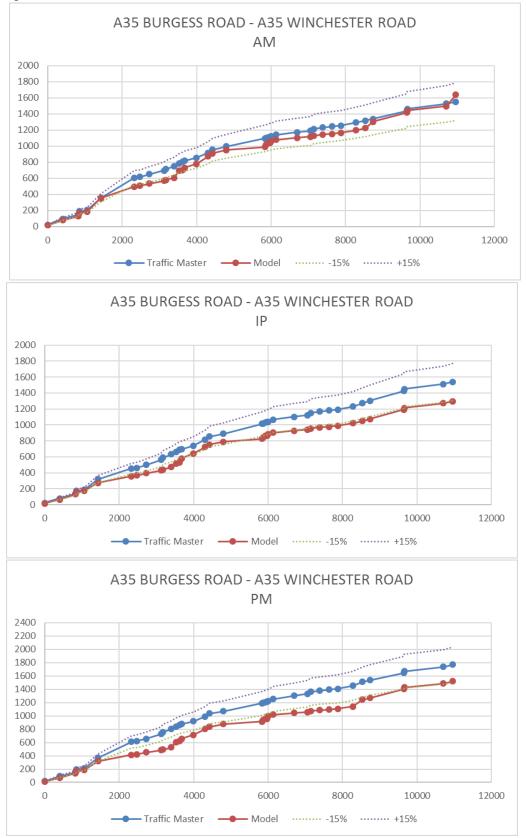

Figure 1. 1EB A336 RINGWOOD ROAD - A35 BURGESS ROAD	
Figure 2. 1WB A35 BURGESS ROAD - A35 WINCHESTER ROAD	
Figure 3. 2EB A35 MILLBROOK ROAD WEST - A3025 HAMBLE LANE	5
Figure 4. 2WB A3025 HAMBLE LANE - A35 MILLBROOK ROAD WEST	6
Figure 5. 3NB A33 DORSET STREET - A335 TWYFORD ROAD	
Figure 6. 3SB A335 TWYFORD ROAD - A33 DORSET STREET	
Figure 7. 4NB A33 DORSET STREET - A33	
Figure 8. 4SB A33 - A33 DORSET STREET	. 10
Figure 9. 5NB A3024 BURSLEDON ROAD - A33 THE AVENUE	11
Figure 10. 5SB A33 THE AVENUE - A3024 BURSLEDON ROAD	
Figure 11. 6NB A27 WEST END ROAD - A27 BASSETT GREEN ROAD	
Figure 12. 6SB A27 BASSETT GREEN ROAD - A27 WEST END ROAD	14
Figure 13. 7NB A3024 BRUNSWICK PLACE - A3057 ROMSEY ROAD	. 15
Figure 14. 7SB A3057 ROMSEY ROAD - A3024 BRUNSWICK PLACE	. 16
Figure 15. 8EB A27 BRIDGE ROAD - A27 WESTERN WAY	17
Figure 16. 8WB A27 WESTERN WAY - A27 BRIDGE ROAD	. 18
Figure 17. 9NB A32 MUMBY ROAD - B3334 TITCHFIELD ROAD	. 19
Figure 18. 9SB B3334 TITCHFIELD ROAD - A32 MUMBY ROAD	
Figure 19. 10NB A32 FAREHAM ROAD - A27 WESTERN ROAD	21
Figure 20. 10SB A27 WESTERN ROAD- A27 WESTERN ROAD	22
Figure 21. 11NB A397 NORTHERN ROAD- A3 LONDON ROAD	23
Figure 22. 11SB A3 LONDON ROAD- A397 NORTHERN ROAD	24
Figure 23. 12NB B2177 PORTSDOWN HILL ROAD – B2149 HAVANT ROAD	25
Figure 24. 12SB B2149 HAVANT ROAD – B2177 PORTSDOWN HILL ROAD	26
Figure 25. 13NB A2030 VELDER AVENUE- A2030 EASTERN ROAD	27
Figure 26. 13SB A2030 EASTERN ROAD – A2030 VELDER AVENUE	
Figure 27. 14NB A288 MILTON ROAD – A288 COPNOR ROAD	. 29
Figure 28. 14SB A288 COPNOR ROAD -A288 MILTON ROAD	
Figure 29. 15NB M275- A27	
Figure 30. 15SB A27 – M275	
Figure 31. 16NB A2047 KINGSTON CRESCENT – A3 SOUTHAMPTON ROAD	
Figure 32. 16SB A3 SOUTHAMPTON ROAD – A2047 KINGSTON CRESCENT	34
Figure 33. 17 NB A3 MARKETWAY – A27 WESTERN ROAD	35
Figure 34. 17SB A27 WESTERN ROAD- A3 MARKETWAY	36
Figure 35. 18NB M3J11- A32	37
Figure 36. 18SB A32- M3J11	38
Figure 37. 19NB M27J2 – A303	39
Figure 38. 19SB A303 – M27J2	40
Figure 39. 20NB M27J2 – A34	.41
Figure 40. 20SB A34 – M27J2	
Figure 41. 21NB Six Dials Jum to Windover Rbt	
Figure 42. 21SB Windhover Rbt to Six Dials Jun	.44
Figure 43. 22NB M27J7 to M3J11	.45
Figure 44. 22SB M3J11 – M27J7	.46
Figure 45. 23NB M27J10 – M3J11	47

Figure 46. 23SB M3J11 – M27J10	48
Figure 47. AM M27 Eastbound	49
Figure 48. IP M27 Eastbound	49
Figure 49. PM M27 Eastbound	49
Figure 50. AM M27 Westbound	50
Figure 51. IP M27 Westbound	50
Figure 52. PM M27 Westbound	50
Figure 53. AM M3 Eastbound	51
Figure 54. IP M3 Eastbound	51
Figure 55. PM M3 Eastbound	51
Figure 56. AM M3 Westbound	52
Figure 57. IP M3 Westbound	52
Figure 58. PM M3 Westbound	52

TIME-DISTANCE CHARTS (X-axis distance: meters, Y- axis time: seconds)

Figure 2. 1WB A35 BURGESS ROAD - A35 WINCHESTER ROAD

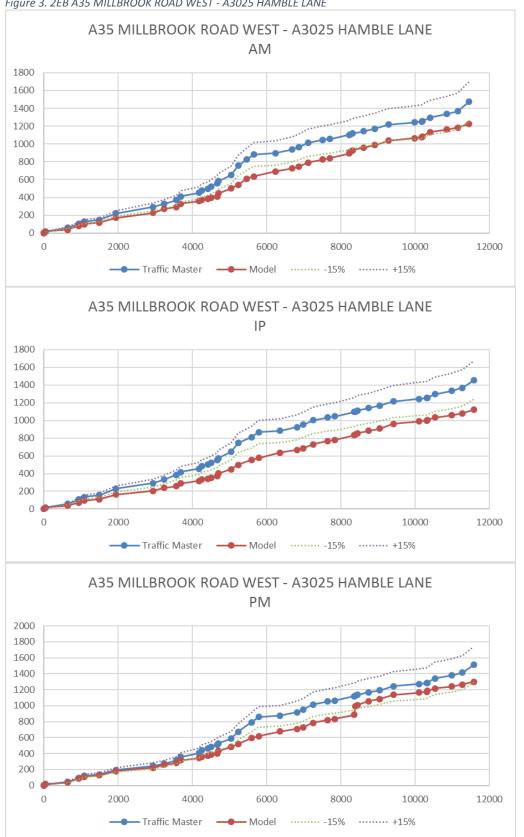


Figure 3. 2EB A35 MILLBROOK ROAD WEST - A3025 HAMBLE LANE

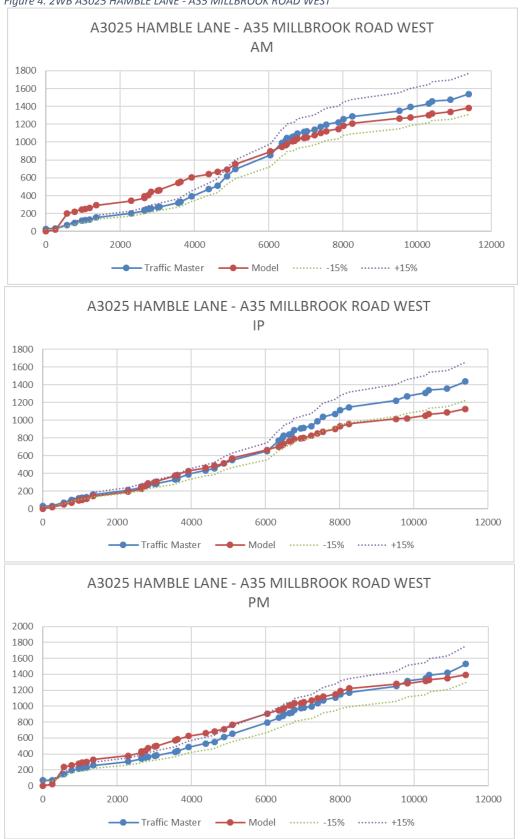



Figure 4. 2WB A3025 HAMBLE LANE - A35 MILLBROOK ROAD WEST

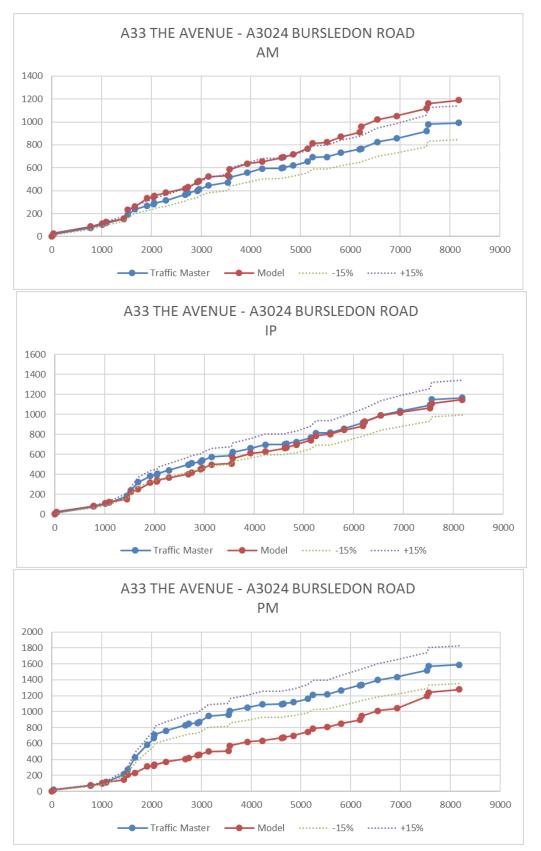
Figure 5. 3NB A33 DORSET STREET - A335 TWYFORD ROAD

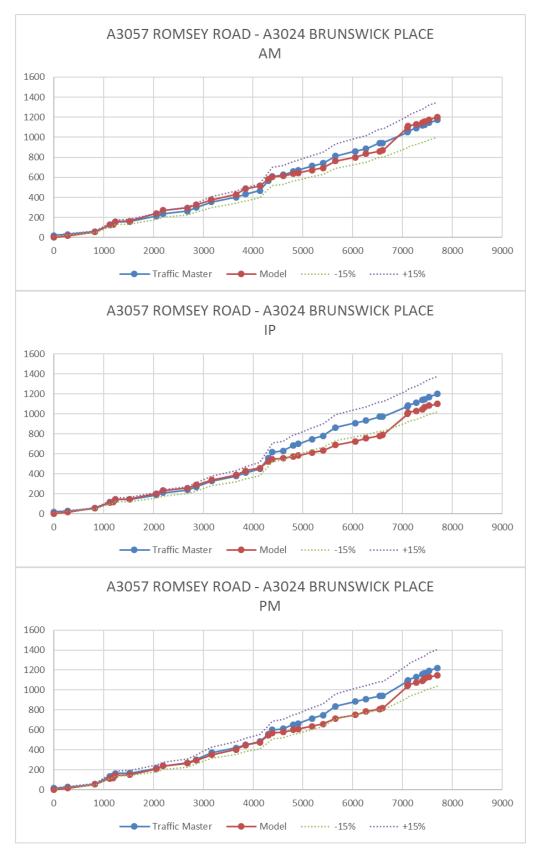
Figure 6. 3SB A335 TWYFORD ROAD - A33 DORSET STREET

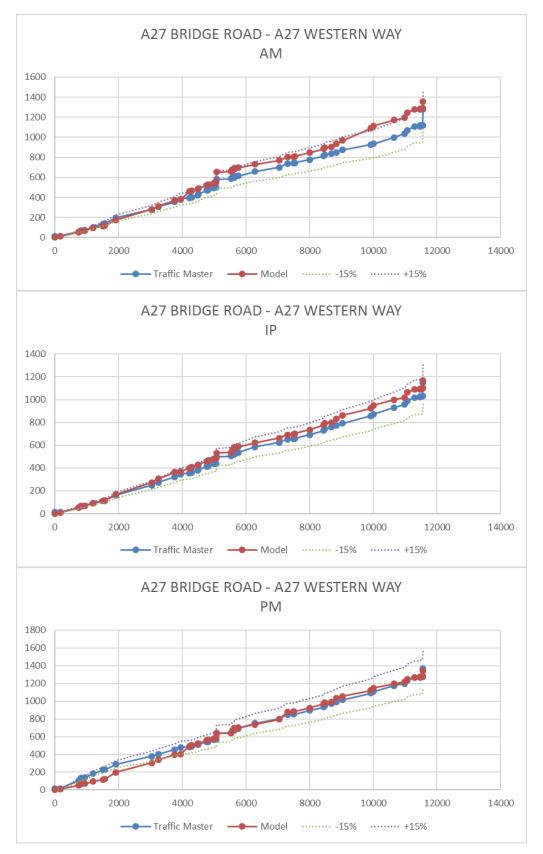


Figure 8. 4SB A33 - A33 DORSET STREET

Figure 9. 5NB A3024 BURSLEDON ROAD - A33 THE AVENUE






Figure 13. 7NB A3024 BRUNSWICK PLACE - A3057 ROMSEY ROAD

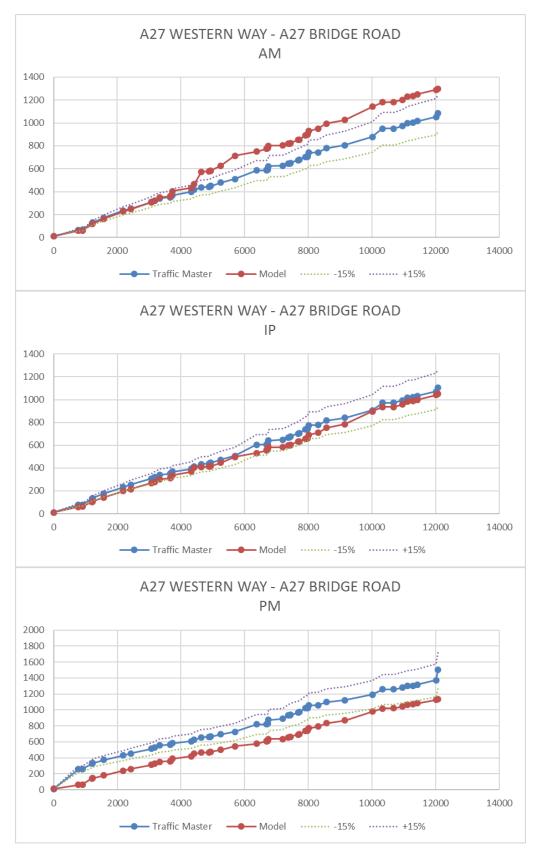
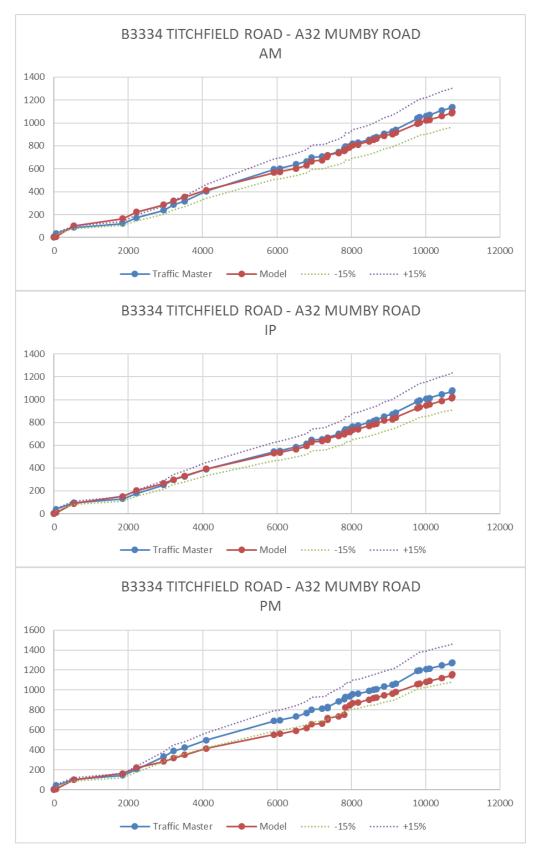
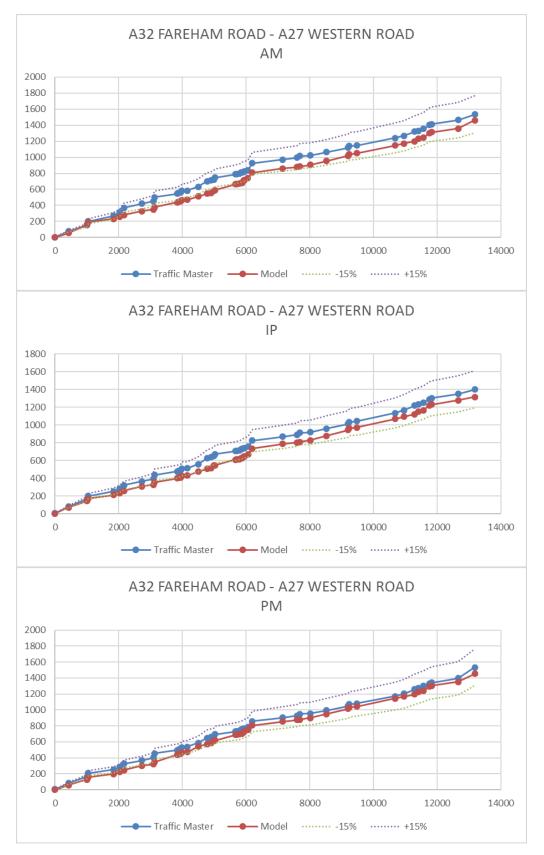


Figure 15. 8EB A27 BRIDGE ROAD - A27 WESTERN WAY

Figure 16. 8WB A27 WESTERN WAY - A27 BRIDGE ROAD

Figure 17. 9NB A32 MUMBY ROAD - B3334 TITCHFIELD ROAD

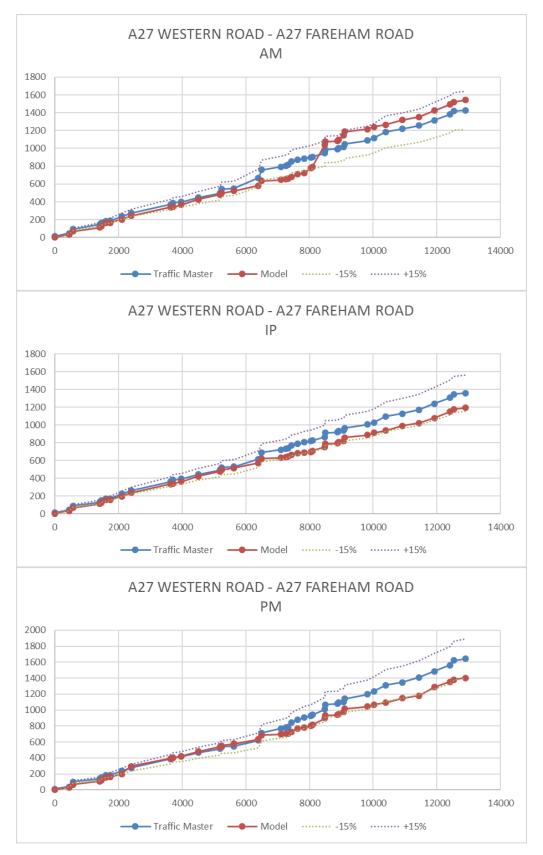

Figure 18. 9SB B3334 TITCHFIELD ROAD - A32 MUMBY ROAD

Figure 19. 10NB A32 FAREHAM ROAD - A27 WESTERN ROAD

Figure 20. 10SB A27 WESTERN ROAD- A27 WESTERN ROAD

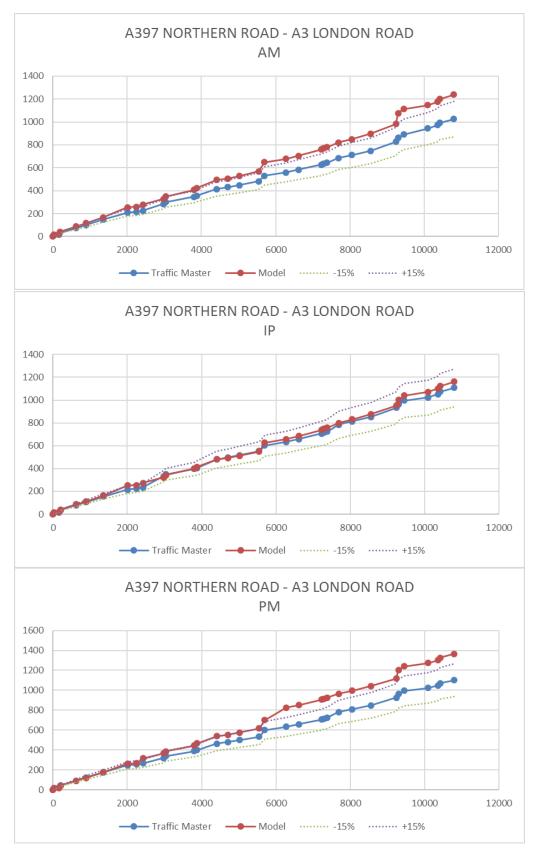
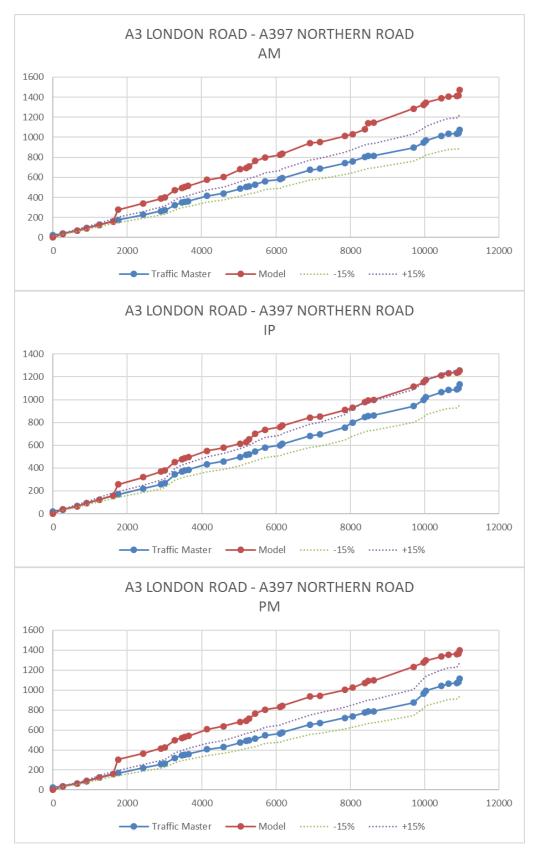



Figure 22. 11SB A3 LONDON ROAD- A397 NORTHERN ROAD

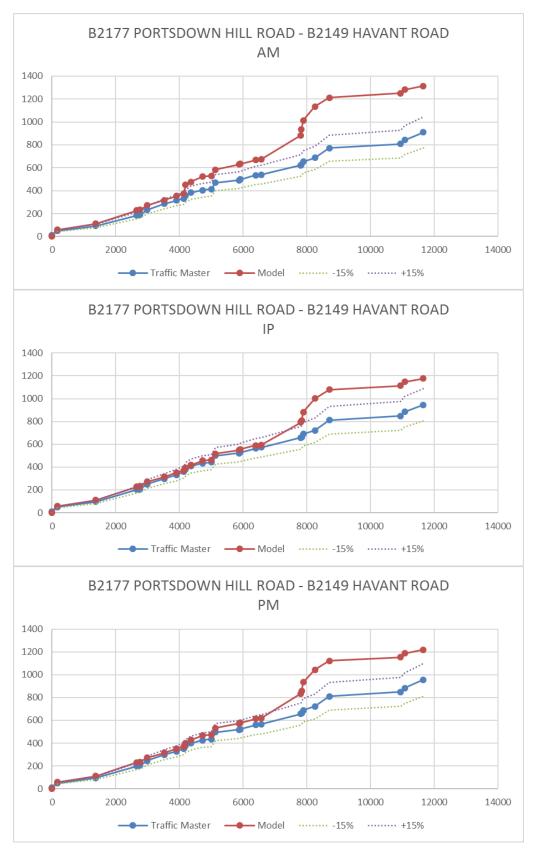
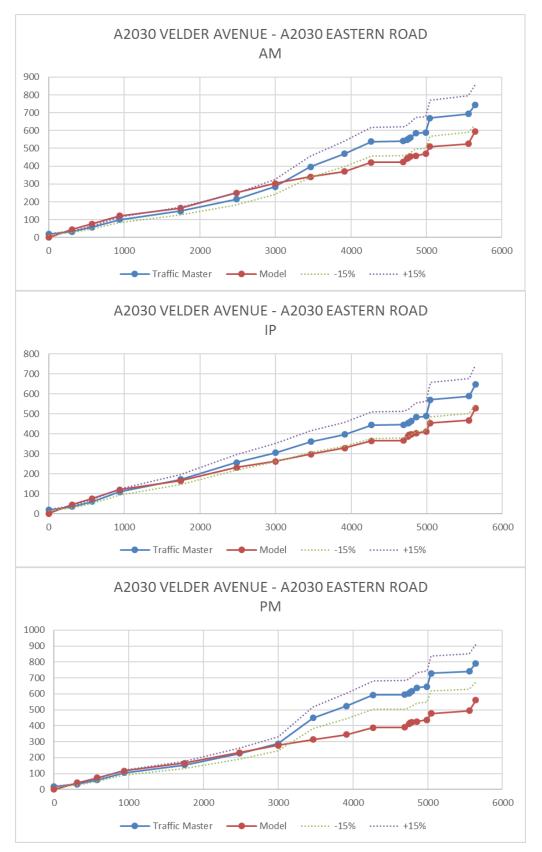



Figure 23. 12NB B2177 PORTSDOWN HILL ROAD - B2149 HAVANT ROAD

Figure 24. 12SB B2149 HAVANT ROAD – B2177 PORTSDOWN HILL ROAD

Figure 25. 13NB A2030 VELDER AVENUE- A2030 EASTERN ROAD

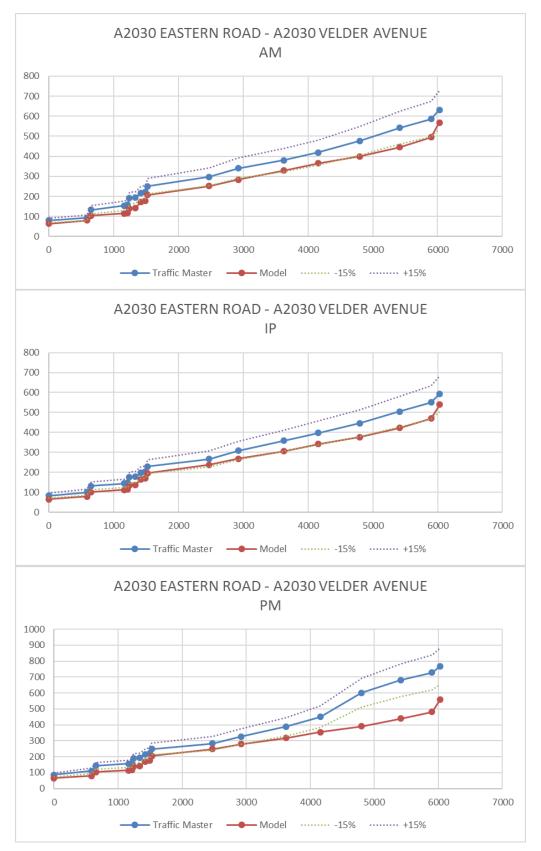
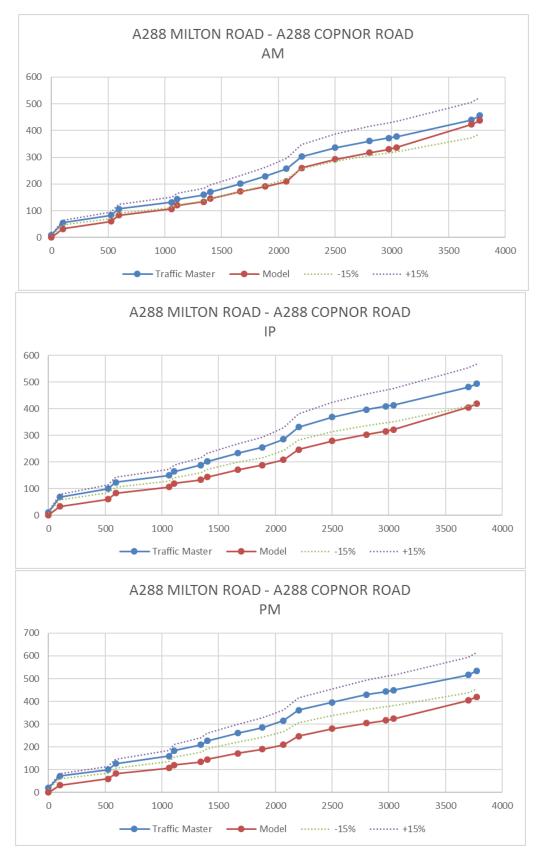
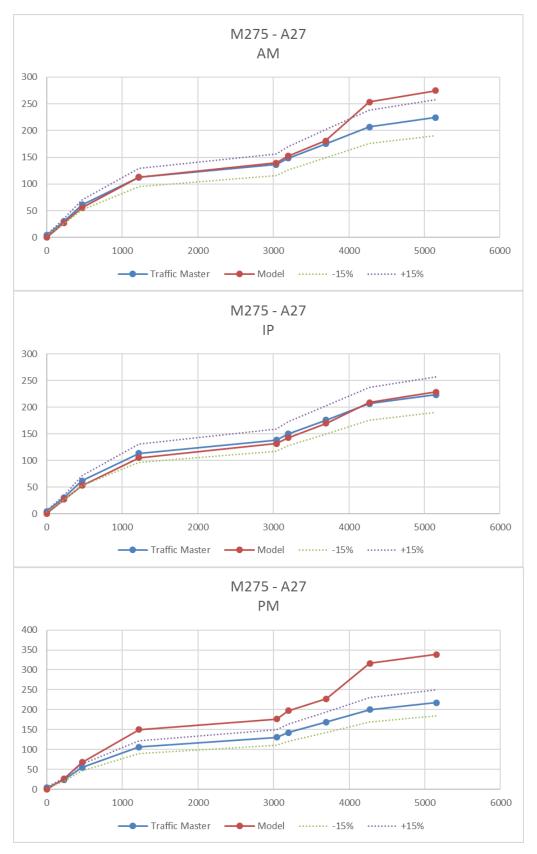


Figure 27. 14NB A288 MILTON ROAD – A288 COPNOR ROAD

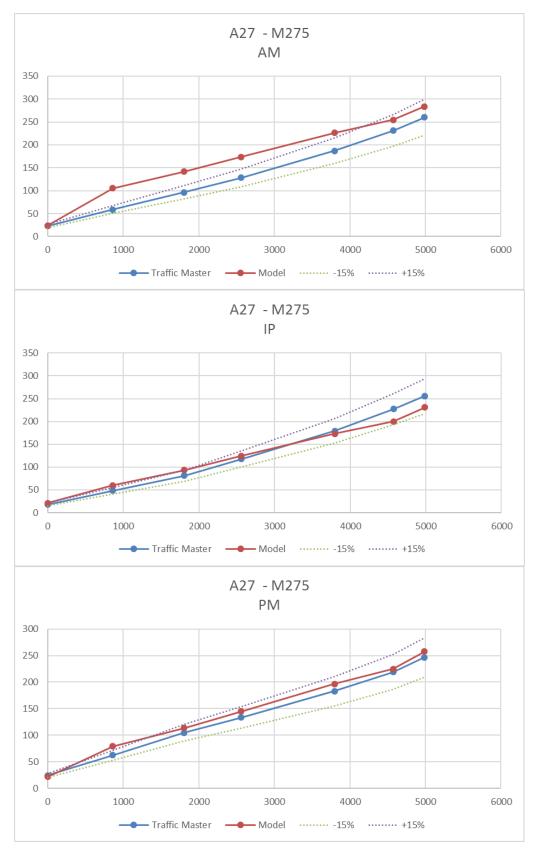
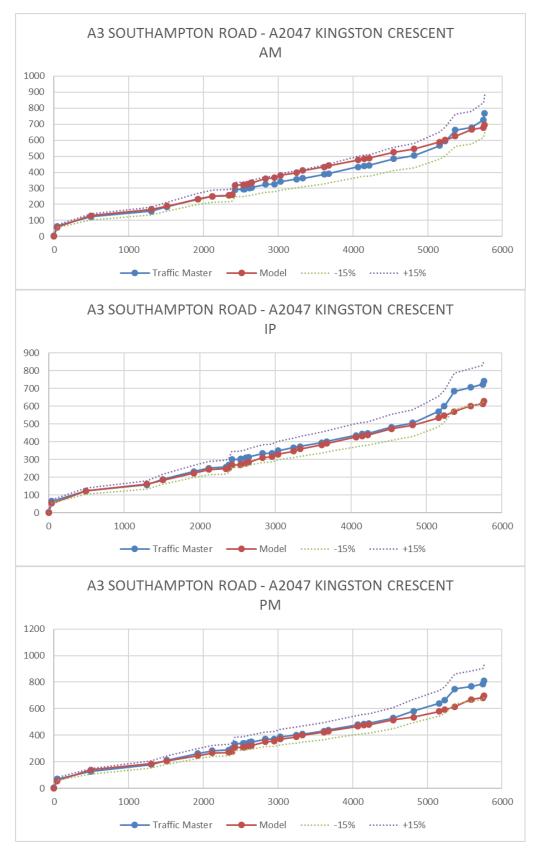
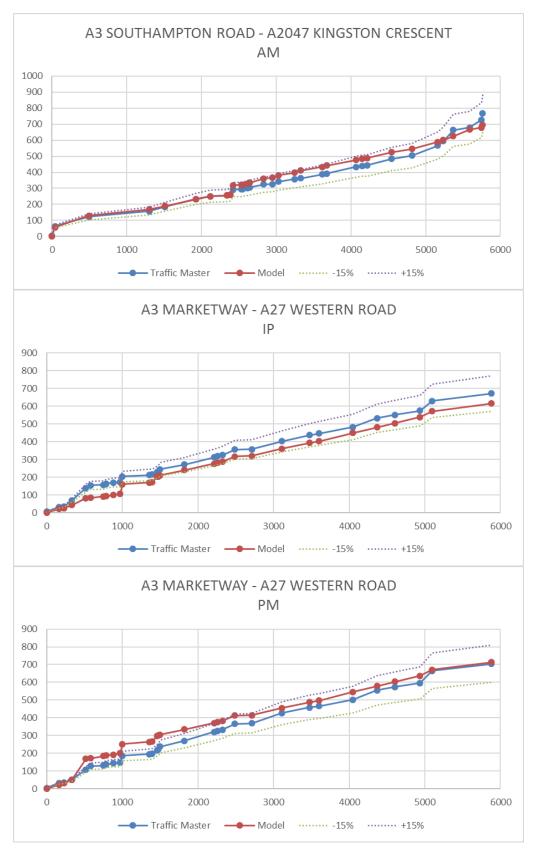
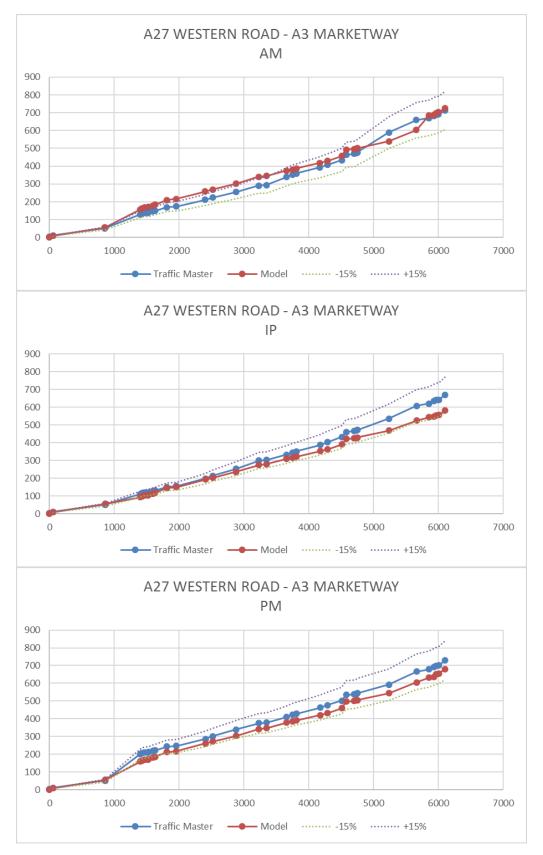
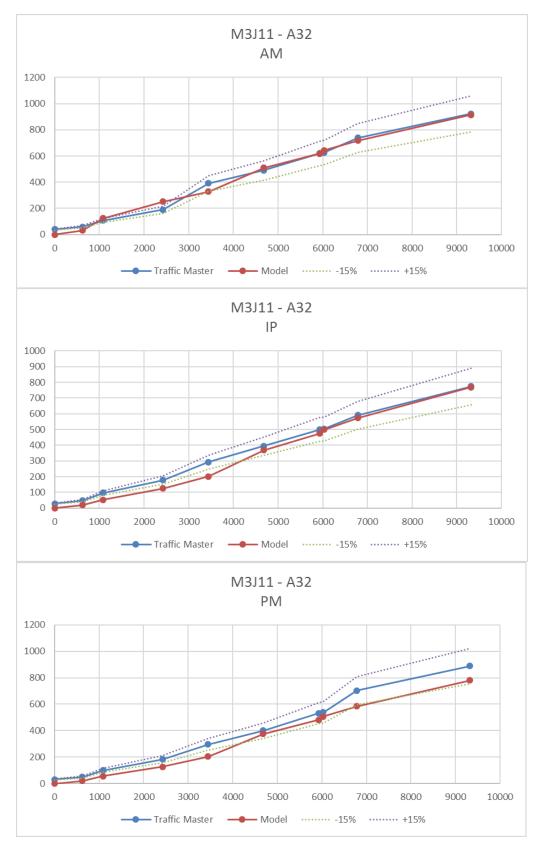

Figure 28. 14SB A288 COPNOR ROAD -A288 MILTON ROAD

Figure 29. 15NB M275- A27









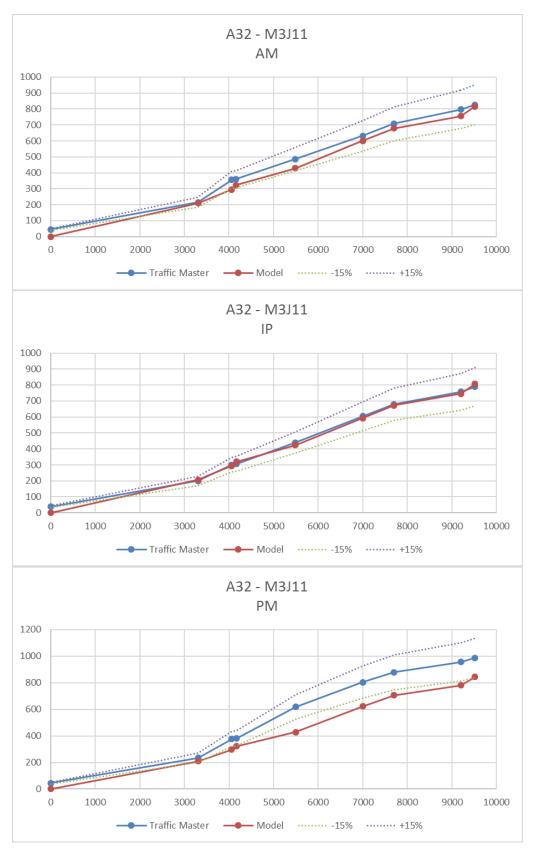

Figure 34. 17SB A27 WESTERN ROAD- A3 MARKETWAY

Figure 35. 18NB M3J11- A32

Figure 37. 19NB M27J2 – A303

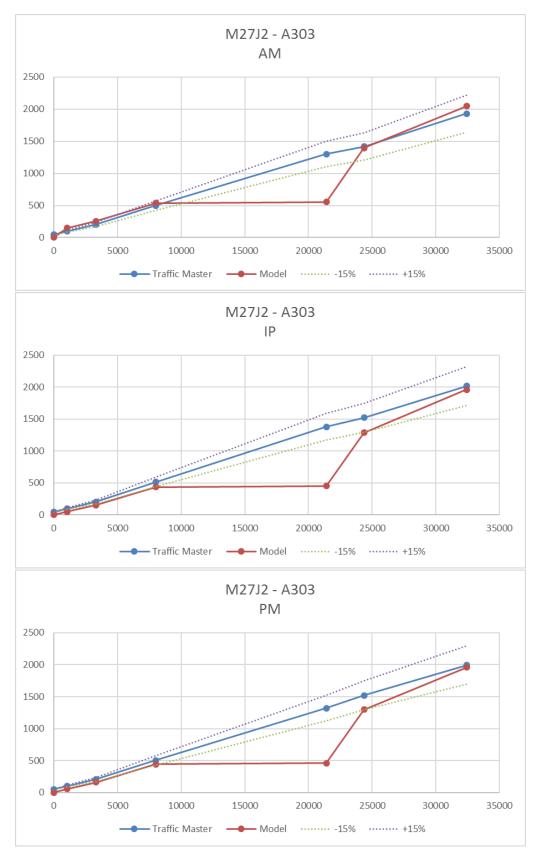
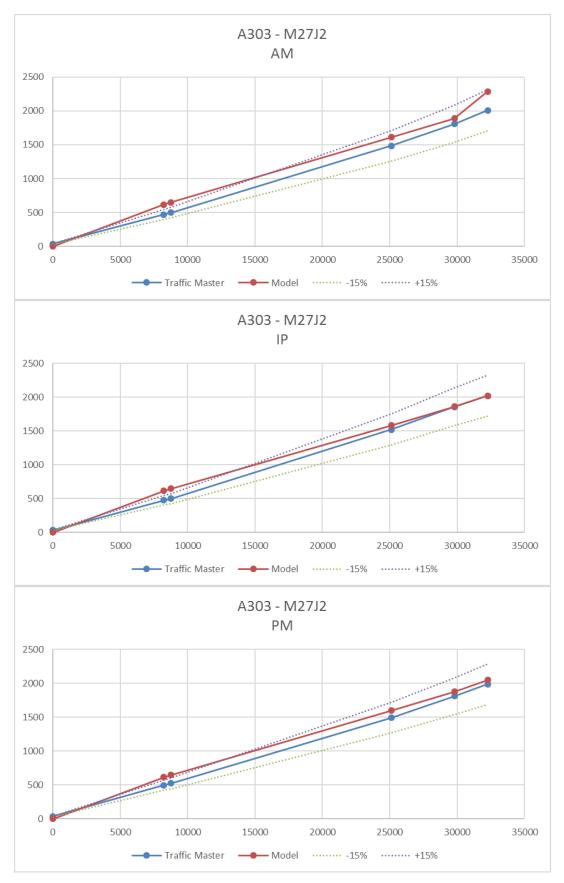
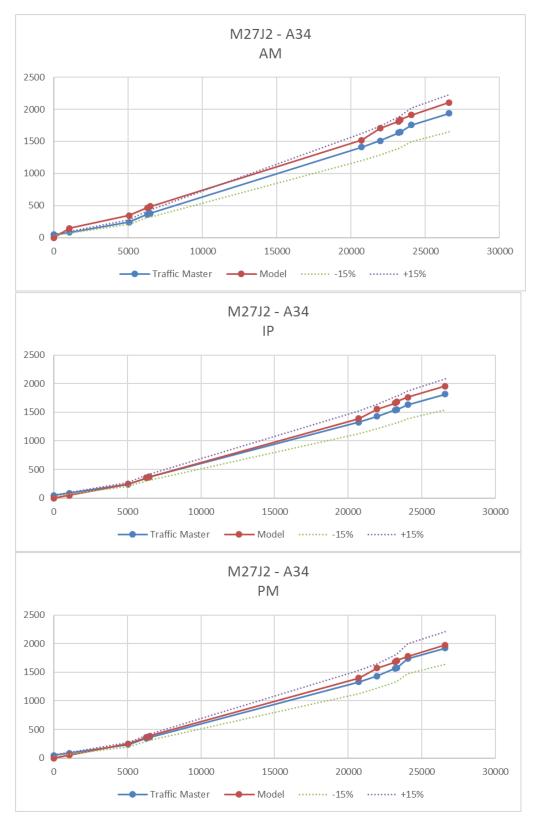
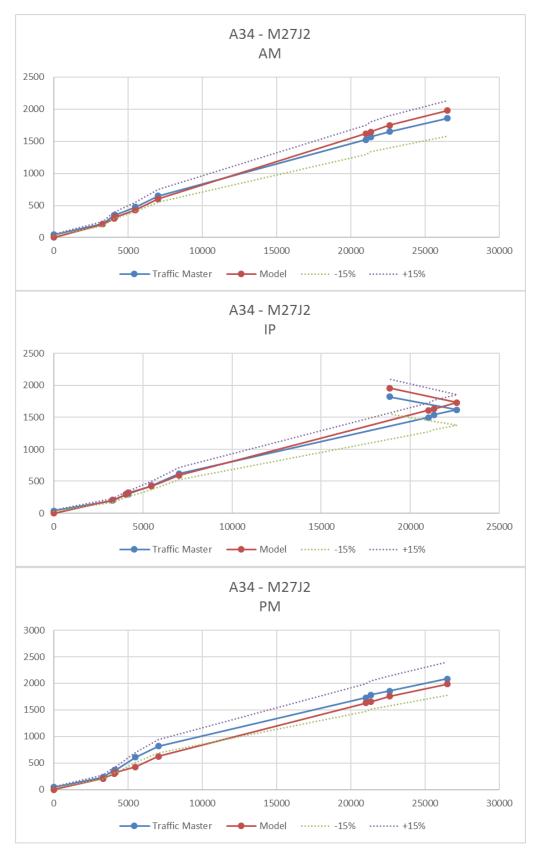
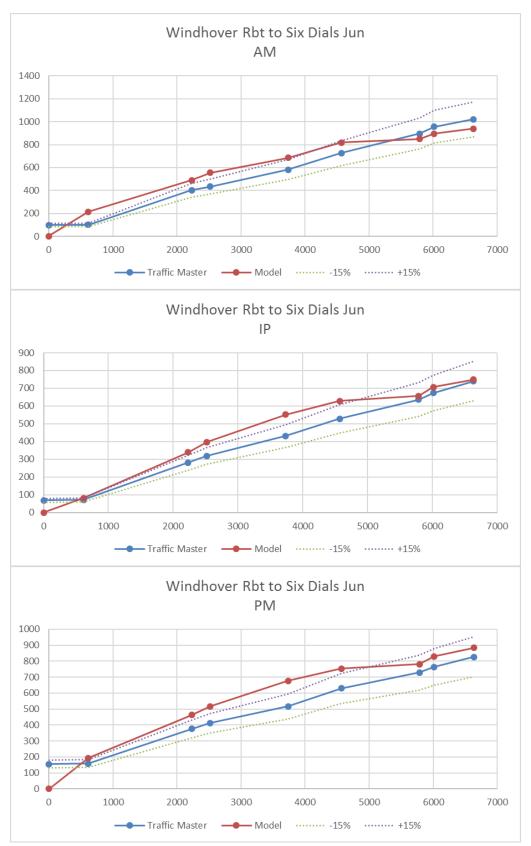
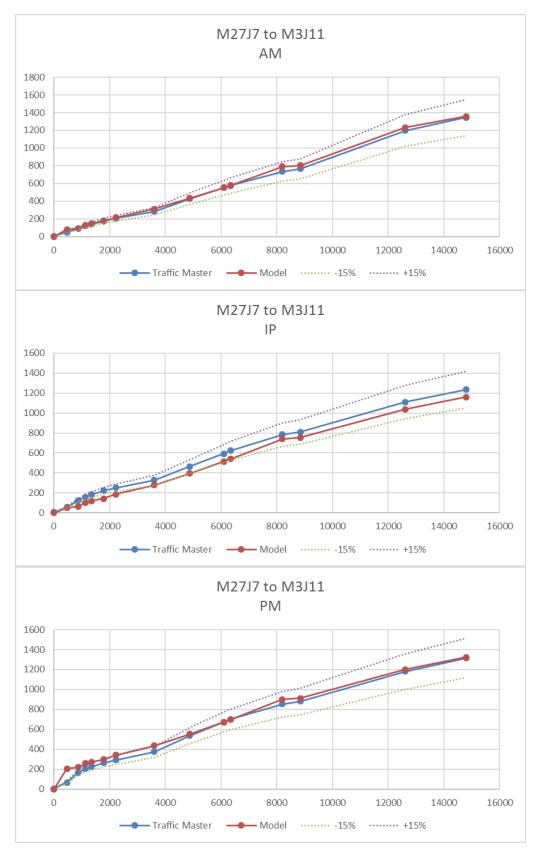



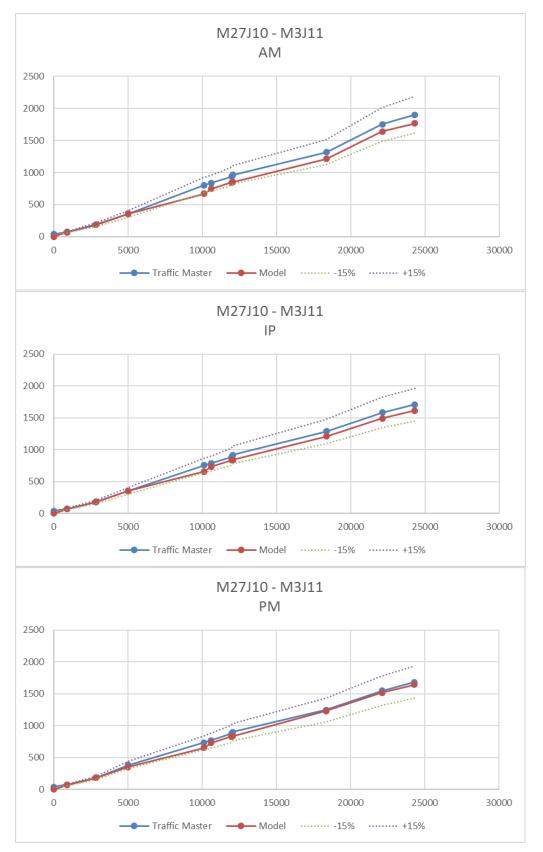
Figure 38. 19SB A303 – M27J2

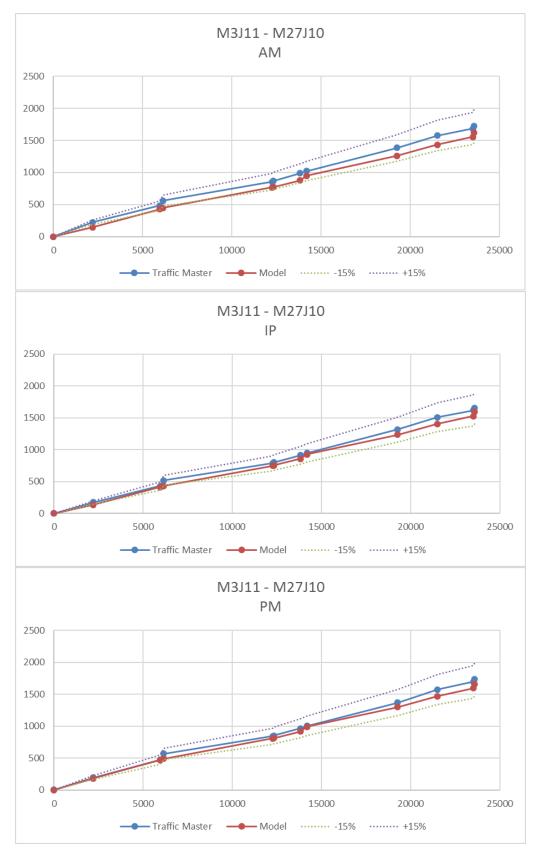
Figure 39. 20NB M27J2 – A34

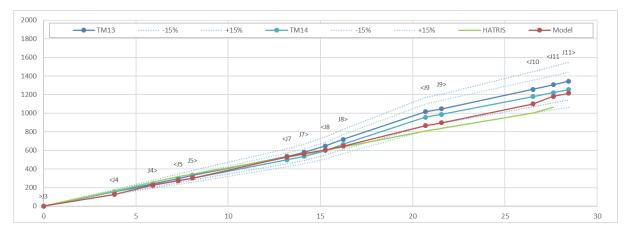



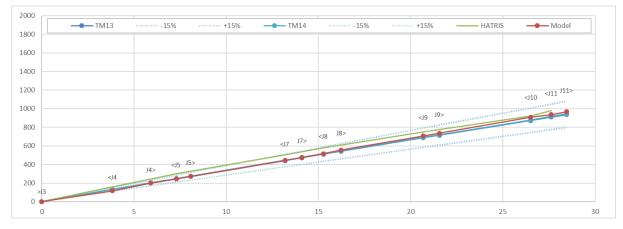

Figure 40. 20SB A34 – M27J2




Figure 43. 22NB M27J7 to M3J11


Figure 44. 22SB M3J11 – M27J7





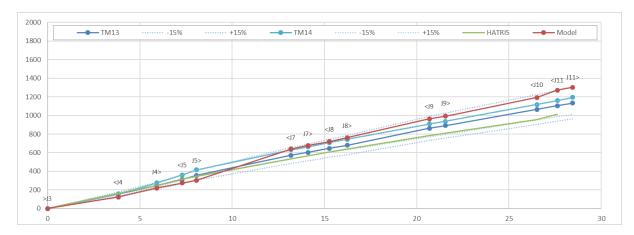
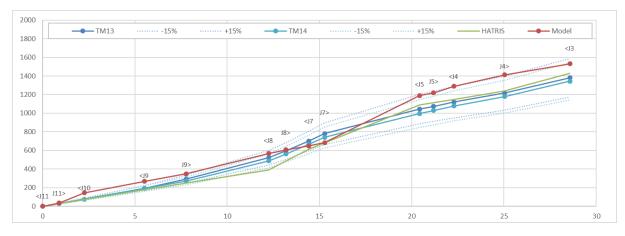
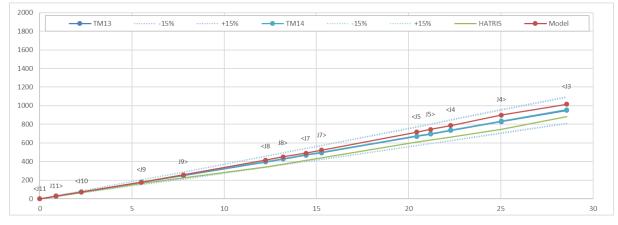


Figure 47. AM M27 Eastbound







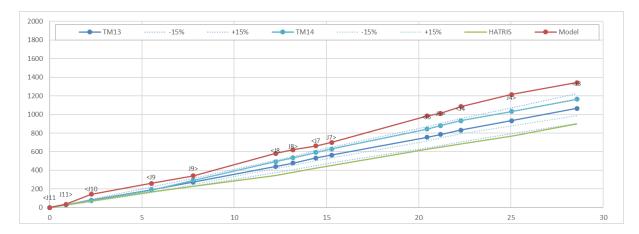
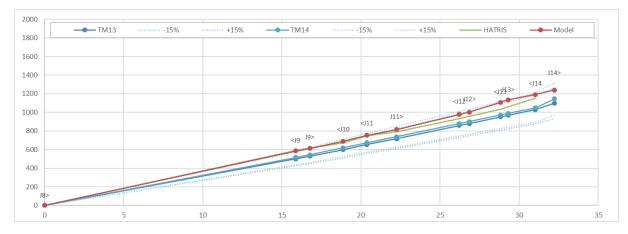
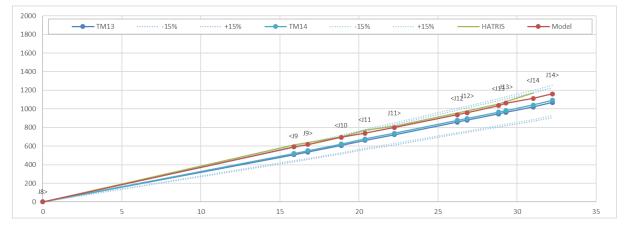

Figure 49. PM M27 Eastbound

Figure 50. AM M27 Westbound





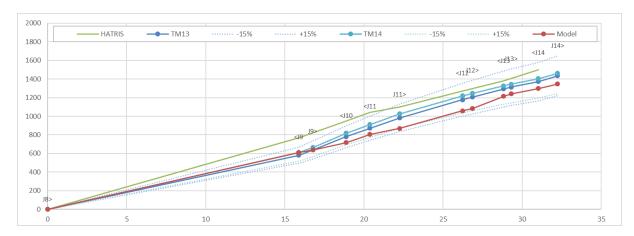
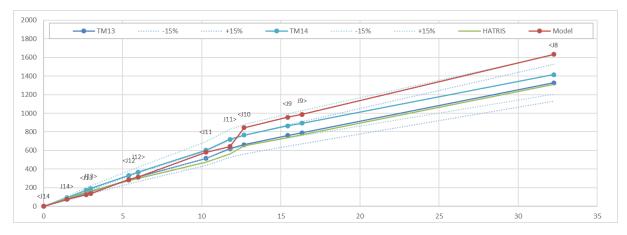
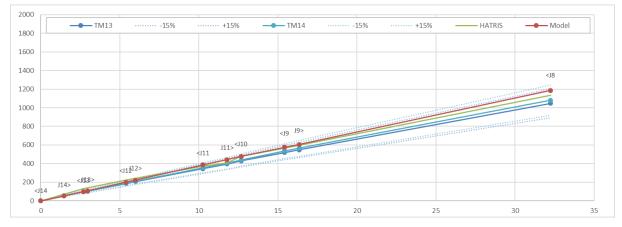

Figure 52. PM M27 Westbound

Figure 53. AM M3 Eastbound





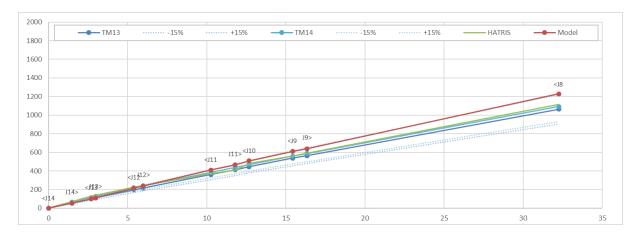

Figure 55. PM M3 Eastbound

Figure 56. AM M3 Westbound

Figure 58. PM M3 Westbound